• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 7
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 144
  • 32
  • 31
  • 28
  • 27
  • 24
  • 22
  • 19
  • 19
  • 17
  • 16
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Response of a peatland ecosystem to stratospheric ozone reduction in Tierra del Fuego

Robson, Thomas Matthew 01 May 2004 (has links)
Tierra del Fuego, at the southernmost tip of South America, is influenced by ozone depletion. The landscape of southern and western Tierra de! Fuego is dominated by peatlands; they are important locally and in the context of global climate change, because they store large quantities of organic carbon. To determine the influence of solar ultraviolet-B radiation (UV-B) on a Tierra de! Fuego peatland, we selectively filtered solar UV-Bin ten pairs of plots. Polyfluorine filters were used to create the Near-Ambient-UV-B Treatment ( 90% solar UV-B), and polyester filters to create the Reduced-UV-B Treatment ( 17% solar UV-B). These filters were first installed in October 1996, and were maintained, September-March, for six years. Following previous plant growth measurements and samples of selected microorganisms under the two UV-B treatments (1996-1999), this dissertation is an account of the more detailed measurements made during the second three-year period of treatments (1999-2001 ). Seasonal sampling of the plant community, microfungi, microfauna, and biogeochemistry of the water and nutrients held by the Sphagnum capitulum was introduced, in an attempt to better understand ecosystem function. Solar UV-B reduced Sphagnum height growth, but this was compensated by more compressed and densely packed Sphagnum capitula. Emergent vascular plants, Nothofagus, Empetrum, and Tetroncium, were more affected than Sphagnum by nearambient UV-B. Solar UV-B altered the Sphagnum-capitulum microenvironment, resulting in: more dissolved organic carbon and phosphorous, higher electrical conductivity, and greater acidity under near-ambient UV-B. Additionally, the populations of testate amoebae and some species of fungi were consistently increased; however, microfungal diversity and rotifer, nematode, and mite populations decreased under near-ambient UV-B. Generally, Sphagnum minimizes the leaching of nutrients by effectively holding water at the capitulum. Solar UV-B altered Sphagnum-capitulum morphology, increased the volume of water held, and made this water more acidic and richer in nutrients. Based on these results, if current trends in ozone depletion were to persist over several decades, a reduction in vascular plant growth, and changes in the trophic relationships of the microorganismal community of the Sphagnum capitulum, would be predicted. These responses have the potential to affect peatland carbon storage and nutrient cycling in Tierra del Fuego.
72

REPONSE DES ESPECES A LA FRAGMENTATION ET LA RESTAURATION DES LANDES HUMIDES ET HABITATS ASSOCIES EN HAUTE ARDENNE (BELGIQUE) : UNE APPROCHE MULTI-TAXONOMIQUE

CRISTOFOLI, Sara 29 October 2009 (has links)
The impact of habitat fragmentation and the success of habitat restoration were studied through a multi-taxonomic approach. The response to landscape structure and/or habitat quality of three taxonomic groups was explored, in (semi-)natural habitats. The three taxonomic groups were complementary, both in terms of their specific life history traits and their place in the food chain. We considered autotrophic species (vascular plants), herbivores (butterflies) and predators (spiders). Life-history traits and species specialization for target habitat were used to refine the analysis. Target habitat was a complex of wet heathlands, poor fens and bogs. Patches of this complex of habitats were sampled on two high plateaus in the Belgian Ardenne, the Plateau de Saint-Hubert and the Plateau des Tailles. Over the last 250 years, two jointly acting habitat dynamics were observed in these areas: a loss of area (and connectivity) on the one hand but also the creation of new habitat patches. It is precisely this double dynamics that enabled us to analyze and develop concepts linked to the response of species faced with spatio-temporal modifications of their habitat. Specifically, in this work we focused on the comprehension of two unbalanced situations, affecting the relationships between species richness and patch characteristics. A first unbalanced situation, the extinction debt, was observed for vascular plant communities. On the opposite, a colonization credit, the second unbalanced situation, was noted for butterflies and seemed to mainly affect specialist species. Specialist species of the three taxonomic groups showed relatively contrasted responses compared to generalist species. However, the life-history traits we studied only slightly influenced the response of species at the community level, excepted for pioneer communities in habitat patches less than 5 years old.
73

Plant responses after drainage and restoration in rich fens

Mälson, Kalle January 2008 (has links)
Rich fens are an important, but threatened, habitat type in the boreal landscape. In this thesis I have examined responses of rich fen vascular plants and bryophytes after drainage and restoration. The effects of drainage on the rich fen flora were observed in a long time study and the responses were rapid and drastic. During an initial stage a rapid loss of brown mosses was observed, followed by increases of sedges and early successional bryophytes, and later by an expansion of dominants. Initial effects of hydrological restoration showed that rewetting can promote re-establishment of an ecologically functional rich fen flora, but has to be combined with other treatments, such as mowing or surface disturbance. After restoration, re-establishment of locally extinct species may be hampered by dispersal limitations. To test if reintroductions could help to overcome dispersal limitations I performed transplantation studies with four common rich fens bryophytes to a rewetted site. The results showed that the species were able to establish, and that survival and growth were promoted by desiccation protection and liming. I further examined competition among three of the most common bryophytes in natural boreal rich fens that usually occur mixed in a mosaic pattern but show small but important microtopographical niche separation. The results indicate similar competitive abilities among the species, and no case of competitative exclusion occurred. The results help to explain the coexistence of these species under natural conditions with microtopographic variation and repeated small scale natural disturbances. Restoring a functional flora in drained rich fens is a complex task, which requires understanding of underlying causes of substrate degradation in combination with suitable restoration measures. The thesis suggests how the results can be used in practical restoration work, and also stresses the need for monitoring of restoration experiments over longer time.
74

Holocene development and permafrost history of two mires in Tavvavuoma, Northern Sweden

Prėskienis, Vilmantas January 2013 (has links)
Two peat cores from two mires with different characteristics, but both containingpermafrost features and located in the eastern part of the Tavvavuoma mire complex innorthernmost Sweden, were analysed for macrofossils and geochemical properties. Local vegetationsequences and changes in geochemical properties of peat were used to reconstruct development ofthe studied mires during the Holocene. The study includes measurements of water/ice content, bulkdensity, loss-on-ignition and C/N ratio. Radiocarbon dates for peatland inception and permafrostaggradation are available. The main purpose of the study is to verify permafrost history in thepeatlands. The results of the macrofossil analysis and values of C/N ratio indicate nutrient poor tointermediate fen environments in both studied mires until recently. Signs of permafrost upheavalwhich caused formation of xerophilic peat can be proved only since late 1950’s. The study resultscorroborate with other studies from Northern Fennoscandia and infer peatland initiation soon afterthe deglaciation of the area and permafrost-free conditions throughout entire Holocene untilrecently.
75

The Role of Ericaceous Shrubs in the Surface Water Balance and Soil Water Availability of Cutover Peatland, Québec

Farrick, Kegan Ka'leb January 2008 (has links)
Peatlands are carbon sinks and occupy approximately 13% of Canada’s terrestrial surface of which 0.02% have been harvested for horticultural peat. The extraction of peat from natural peatlands alters the hydrology which affects the growth and survival of Sphagnum the primary peat forming vegetation. Ericaceous shrubs do not require specific water content and soil water pressure conditions for their existence and in cutover peatlands they occupy more than 70% of the surface. Rainfall interception, transpiration and root water uptake and redistribution are processes that alter water availability at the soil surface. The high abundance of shrubs at cutover peatlands will influence the surface water balance and more importantly soil water availability and, inevitably determine the success of Sphagnum reestablishment at the site. This study seeks to understand the role that ericaceous shrubs play in the surface hydrological balance at a cutover site and how these changes impact Sphagnum development. Rainfall interception, transpiration, litter layer evaporation and soil water flux was investigated in the field and lab. Approximately 334 mm of rainfall was measured over the season. The shrub canopy and litter had a maximum storage capacity of 4 and 1.2 mm respectively and intercepted ca. 36.7% (120 mm) of rainfall over the season. The effects of rainfall intensity and duration were more important than gross rainfall in determining the amount of water intercepted by the canopy, while the thickness and mass of the litter layer largely determined the storage capacity. Evapotranspiration from shrubs averaged 2.5 mm day-1 with a total of 211 mm over the season. Transpiration was 68% (142 mm) of total evapotranspiration losses, and represented the greatest water loss from the shrub canopy. From these analyses only 22% (72 mm) of rainfall is available for other soil processes and moss development. The evaporation under a litter cover is lower than bare peat and in the field represents water storage of 17 mm over the season. Reduced water input by litter interception is offset by the increased water storage under the litter. Laboratory analyses of soil water flux under ericaceous shrubs show that water loss under the shrubs was greater than bare peat. Water use under the shrubs was highest between -10 and -30 cm and was ca. 2 times greater than bare peat at the same levels. Volumetric water content (θ) decreased throughout the day and water use by shrubs during the day was twice that at night. The shrubs also maintained θ and soil water pressure (ψ) above the threshold values of 50% and -100 cm, respectively, needed for Sphagnum survival. Based on these analyses the shrubs will be beneficial to Sphagnum reestablishment and survival once the primary water losses have been compensated. I recommend raising the water table above -20 cm. In peatland restoration activities, at this level, water used between -10 and -30 cm can quickly be recharged and surface moisture maintained above threshold by capillary rise helping to offset water loss by interception and transpiration through capillary rise.
76

The Role of Ericaceous Shrubs in the Surface Water Balance and Soil Water Availability of Cutover Peatland, Québec

Farrick, Kegan Ka'leb January 2008 (has links)
Peatlands are carbon sinks and occupy approximately 13% of Canada’s terrestrial surface of which 0.02% have been harvested for horticultural peat. The extraction of peat from natural peatlands alters the hydrology which affects the growth and survival of Sphagnum the primary peat forming vegetation. Ericaceous shrubs do not require specific water content and soil water pressure conditions for their existence and in cutover peatlands they occupy more than 70% of the surface. Rainfall interception, transpiration and root water uptake and redistribution are processes that alter water availability at the soil surface. The high abundance of shrubs at cutover peatlands will influence the surface water balance and more importantly soil water availability and, inevitably determine the success of Sphagnum reestablishment at the site. This study seeks to understand the role that ericaceous shrubs play in the surface hydrological balance at a cutover site and how these changes impact Sphagnum development. Rainfall interception, transpiration, litter layer evaporation and soil water flux was investigated in the field and lab. Approximately 334 mm of rainfall was measured over the season. The shrub canopy and litter had a maximum storage capacity of 4 and 1.2 mm respectively and intercepted ca. 36.7% (120 mm) of rainfall over the season. The effects of rainfall intensity and duration were more important than gross rainfall in determining the amount of water intercepted by the canopy, while the thickness and mass of the litter layer largely determined the storage capacity. Evapotranspiration from shrubs averaged 2.5 mm day-1 with a total of 211 mm over the season. Transpiration was 68% (142 mm) of total evapotranspiration losses, and represented the greatest water loss from the shrub canopy. From these analyses only 22% (72 mm) of rainfall is available for other soil processes and moss development. The evaporation under a litter cover is lower than bare peat and in the field represents water storage of 17 mm over the season. Reduced water input by litter interception is offset by the increased water storage under the litter. Laboratory analyses of soil water flux under ericaceous shrubs show that water loss under the shrubs was greater than bare peat. Water use under the shrubs was highest between -10 and -30 cm and was ca. 2 times greater than bare peat at the same levels. Volumetric water content (θ) decreased throughout the day and water use by shrubs during the day was twice that at night. The shrubs also maintained θ and soil water pressure (ψ) above the threshold values of 50% and -100 cm, respectively, needed for Sphagnum survival. Based on these analyses the shrubs will be beneficial to Sphagnum reestablishment and survival once the primary water losses have been compensated. I recommend raising the water table above -20 cm. In peatland restoration activities, at this level, water used between -10 and -30 cm can quickly be recharged and surface moisture maintained above threshold by capillary rise helping to offset water loss by interception and transpiration through capillary rise.
77

Physical and Geochemical Characterization of Two Wetlands in the Experimental Lakes Area, North-western Ontario, Canada

Anderson, Miles 24 September 2012 (has links)
Anthropogenic disruptions in the form of hydrological alterations, such as dam construction and the associated water diversions are a cause of much upheaval to local and regional ecosystems. Lake 626 within the Experimental Lakes Area of north-west Ontario, along with its downstream wetlands, 626A and 626B are one such system. Construction of a dam at the L626 inflow has completely restricted water flow, reducing and reshaping the watershed, increasing water retention time, and decreasing outflow into the wetlands. This study investigates the state of each wetland through physical and geochemical characterization during the first year following the diversion. Previous studies have found that hydrological diversions in wetlands can lower water table levels, altering soil chemistry and producing a shift in floral and faunal communities. Ultimate consequences involve significant loss of wetland area through conversion to upland habitat. This provides a model for climatic warming scenarios, wherein sustained drought conditions can produce the same result. Boreal wetlands are surprising fragile ecosystems that store massive quantities of carbon and are at risk of releasing it in such situations. One study showed that an extended summer drought in an otherwise average year with above average precipitation produced losses of 90 g C/m2 over the course of the year. Maintenance of reduced-flow in wetlands 626A and 626B is expected to convert the system into a carbon source and reduce overall wetland area. Radiocarbon dating has revealed that following deglaciation, both 626A and 626B basins were open water wetlands, depositing limnic peat for about 3200 and 1300 years respectively. Each site then transitioned into open sedge dominated fen – 626B to the present and 626A until about 2.5 ka BP when Sphagnum began to develop. Wetland 626B is decidedly an open shrub/sedge fen, supporting Myrica gale, Chamaedaphne calyculata and Carex rostrata / lasiocarpa communities. Wetland 626A is a bog/fen complex, sharing similar communities in the fen areas, but housing a large, centrally located bog of shrub species overlying Sphagnum hummocks. Tritium values in 626A were similar to cosmic background levels, indicating that recharge of basal pore water has not occurred in at least 60 years. Tritium in 626B was much higher, suggesting a substantial difference in hydrology or peat hydraulic conductivity between the basins. Measurement of DOC profiles showed high concentrations in near-surface water, reaching over 80 mg/L, and dropping to about 20 mg/L at maximum depths. An opposite trend was seen for DIC and CH4 profiles which increased concentration with depth (25 – 70 mg/L DIC; 75 – 700 μmol/L CH4). Isotopically however, 13C signatures from basal DIC were more positive while signatures from CH4 were typically more negative (-6 ‰ to +4 ‰ DIC; -57 ‰ to -73 ‰ CH4). Breakdown of DOC by LC-OCD showed high concentrations of humic substances and low molecular weight neutrals. The origin of humic substances in surface water became more pedogenic with increasing distance from the L626 outflow, indicating the influence of decaying wetland vegetation on the DOC of adjacent water. A comparison between contemporary and future characterization of boreal peatlands under drought-like conditions will provide a better understanding of the impacts suffered by wetlands during hydrological alterations. The high sensitivity of wetlands to changing hydrology should also provide a measure for gauging the effects of long term climate warming. This will assist in the development of environmental policies to better govern both the establishment of water diversions and the multitude of other practices leading to climate change.
78

Förändring av våtmarkers areal och ekosystemtjänster i Byringe, Strängnäs kommun : En landskapsanalys på över 250 år

Ringborg, Evelina January 2014 (has links)
Wetlands have been considered throughout millenniums as valuable assets due to the ecosystem services they provide for humans. However, previous research has shown that the value of wetlands has declined over the last 150 years, in parallel to the growth of agriculture. Today, society has realized the value of ecosystem services, through increased knowledge and awareness.This study focuses on the area of Byringe, 20 km southwest of Strängnäs. The aim of this study was to identify changes of wetland areas, wetland classes and ecosystem services over time. This study compared four maps covering the area, between the years 1714 to 2013. The results show that the wetland areas have increased from their initial coverage of 6.5% up to 24.4% today. This 17.9% increase corresponds to 115.3 ha. A closer examination of this 300-year transformation showed variation among the wetland classes. Marshlands showed the largest increase of 44.3ha, followed by fen with 33.5ha and bog 7.6ha. In some areas fen had been converted to bog, which is a change in carbon storage and thus climate regulation. The lakes had developed into marshland, which has caused the disappearance of fish stocks, negatively affecting the generation of food supply. The increased marshland area has also resulted in increased carbon storage and provisioning services such as fiber material from plants and bioenergy production from trees. Furthermore, the recent transformation of agricultural land into fen has generated a loss in food production services such as crops. Instead, other services have appeared in terms of climate regulation, flood protection, increased protection against erosion, water purification and support of biodiversity.
79

The Effect of Long-Term Drainage on Plant Community Composition, Biomass, and Productivity in Boreal Continental Peatlands

Miller, Courtney A. 16 September 2011 (has links)
This thesis is an investigation of the effects of long-term drainage on plant community composition, biomass and productivity in boreal continental peatlands. Because bogs are ombrotrophic, I hypothesized that bog plant community composition, biomass and productivity would be affected by drainage less than fens. I identified six Alberta peatlands (2 bogs, 4 fens) that were affected by long-term drainage through road construction or drainage ditches. I found that understory species composition in fens changed more in response to drainage than in bogs, and was related to the degree of canopy closure. Woody biomass increased in all poor fens sites with drainage, while understory biomass was not affected. I investigated the influence of drainage on primary productivity in two sites, and found that tree and moss productivity responded differently. These results have implications for peatland carbon cycling, as an increase in woody biomass will affect litter quality and future fire risk.
80

The long-term effects of drainage on carbon cycling in a boreal fen

Kotowska, Agnieszka 07 January 2013 (has links)
I investigated the effects of multi-decadal water table drawdown on carbon (C) exchange, as well as functional relationships between C fluxes and environmental controls, in a boreal rich fen. Drainage increased ecosystem respiration of CO2 and decreased CH4 fluxes, but did not affect understory primary productivity. Drainage altered plant responses to light availability, as well as the responses of ecosystem respiration and CH4 flux to water table position. In a laboratory experiment, I found that drainage reduced potential CO2 and CH4 fluxes suggestive of decreased peat substrate quality. Together, these results indicate that long-term drying increases C losses and that both environmental conditions and substrate quality influenced C fluxes post-drainage. My findings suggest that C losses from increased ecosystem respiration may not be mitigated by increases in plant productivity or decreases in substrate quality, and that long-term drainage reduced C storage capacity in this boreal fen. / The Natural Sciences and Engineering Research Council of Canada

Page generated in 0.0457 seconds