• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origins and development of the Flow Country blanket mire, Northern Scotland, with particular reference to patterned fens

Charman, Daniel John January 1990 (has links)
No description available.
2

An investigation of the combined stable isotopic composition of methane emissions from northern wetlands

Jackson, Sarah May January 1998 (has links)
Methane is a radiatively active, naturally occurring atmospheric trace gas which is thought to account for as much as 19% of the enhanced greenhouse effect. Ice core studies have shown that the atmospheric concentration has more than doubled since pre-industrial times. Wetlands are the largest natural source of atmospheric methane, contributing around 21 % of the annual global flux. The magnitude of various sources of methane is still poorly defined. Stable isotope measurements are increasingly being used to constrain global budgets of atmospheric trace gases because isotopic analysis provides a much clearer picture of global atmospheric chemistry than C~ concentration measurements alone. Conventional analytical techniques for studying dual stable isotopic composition of methane (813e and 8D) require prohibitively large quantities of CH4 for analysis. At the Planetary Sciences Research Institute of the Open University, a highly sensitive static mass spectrometer has been developed which uniquely uses CH4 as the analyte. The method requires only 8 ng ofCH4 for analysis «10 ml ambient air), making replicated measurements of the isotopic composition of CH4 emissions from wetlands feasible for the first time. Methane emissions from an ombrotrophic mire in Snowdonia have been measured over 2 years, (1995-1997) and analysed for 817M. Parallel laboratory studies have also been conducted, to constrain the effects of environmental variables such as peat temperature and water table depth. The presence of vascular plants enhanced methane flux. In the field, methane flux showed seasonal variation. Peat temperature and water table depth could account for 68% of this variation. The isotopic composition of methane flux from the ombrotrophic mire also exhibited seasonal variation, with 817M ranging from -34 to -17%0. The lowest values were observed in summer and the highest in winter. Variations in the isotopic composition of peat water are unlikely to account for more than a 2%0 shift in 817M. Although there was a strong correlation between peat temperature and methane isotopic composition in the field, peat temperature is thought to be an indirect effect, because in laboratory studies this relationship was absent. There was no relationship between water table depth and 817M. It was concluded that the seasonal variation in the isotopic composition of methane emission is linked to the plant growth cycle. Comparison of 817M values determined for methane emissions in Snowdonia with published 813C and 8D data leads to the conclusion that methane is produced mainly by C02 reduction. Contrasting terrains in a paisa mire in the Arctic region of Finland exhibited methane _ emissions with distinct 817M values: lakes, +4.8 ±1.2%0; pools, -3.9 ±O.IO/oo and hummocks, -28.6 ±5.8%0 . From these isotope data it was concluded that in pool and lake sediments the methanogenic pathway is acetate fermentation, while in hummocks methane is produced by CO2 reduction. This study is the first investigation of the stable isotopic composition of methane emissions from wetlands in the UK. The data collected in Snowdonia, and in Finland, show the need for systematic, year round isotopic analysis of methane emissions, if isotope data are to be used in constraining the global methane budget.
3

The effects of rehabilitation management on the vegetation of Fenn's, Whixall and Bettisfield Mosses National Nature Reserve : a cut-over lowland raised mire

Horton, Karen January 2008 (has links)
The relationship between vegetation change and rehabilitation management is investigated at a severely degraded cut-over lowland raised mire on the Wales/England border, managed by Natural England and The Countryside Council for Wales. Positive responses are confirmed 11 years after rehabilitation commenced, identifying trends towards raised mire as well as bog pool vegetation and water table thresholds associated with these trends have been established. A landscape-scale vegetation survey was carried out three times over 9 years. Species abundance was correlated with average seasonal water table height, time since rehabilitation, cutting type and survey year. Key species maps for the time series confirmed positive vegetation response, but slower than stipulated in the site management plan. There was a clear increase in the target peat-forming species (Sphagnum cuspidatum, Eriophorum angustifolium and E. vaginatum) as a direct response to rehabilitation and correlating positively with a high water table. Permanent quadrat vegetation monitoring was carried out three times at five-year intervals. Uncut areas and areas of recent commercial cuttings were rehabilitated earliest having significant increases in target mire species without the loss of other mire species from excess inundation. In the recent commercial cutting areas, a successional trend was identified, from a low water table to a fluctuating water table characterised by Molinia caerulea-rich vegetation, followed by a transition to stable, inundated conditions supporting Sphagnum cuspidatum/Eriophorum spp pool vegetation. A second successional trend, associated with the achievement of a near-surface, stable water table, saw the development of raised mire vegetation including Sphagna other than S. cuspidatum. This latter trend was primarily found in the uncut areas of the site but was also found to a lesser extent in recently cut-over areas where it was preceded by a fluctuating water table with a Calluna vulgaris- Molinia caerulea vegetation. A new survey related water table residence time calculated from hydrology data with vegetation for each quadrat. Analysis identified a mire pool vegetation type correlated with shallow, above surface flooding. A diverse mire vegetation type was also found which correlated with the water table staying within the upper 10cm of peat. The minimum threshold for establishment of Sphagnum species was found to be an average water table level within the range of 5.1 to 10cm below the peat surface. Higher cover of Sphagnum species was related to shallow flooding – suggesting that these conditions would be most efficient in re-establishing mire vegetation. 3 A base-line vegetation monitoring survey on an area immediately following deforestation and damming identified a subtle but positive response of the mire vegetation to management within one year.
4

Radionuclide transport in the boreal landscape : Uranium, thorium and other metals in forests, wetlands and streams

Lidman, Fredrik January 2013 (has links)
The boreal landscape is complex mosaic of vast forests, lakes and wetlands. Through the landscape flows a fine network of streams and rivers, carrying dissolved and suspended material from atmospheric deposition and weathering of soils and bedrock to downstream recipients. This thesis investigates the transport of U, Th and other metals in the boreal landscape by comparing a set of catchments with contrasting characteristics, ranging from 0.12-68 km2 in area. Using uranium (234U/238U) and oxygen isotopes (δ18O) it was demonstrated that catchment size has a strong impact on the hydrological pathways and on the mobilisation of uranium. Both tracers also displayed a consistent shift towards more superficial sources and more superficial flow pathways when going from winter baseflow conditions to the spring flood. Large spatiotemporal variability was observed with U fluxes ranging from 1.7 -30 g km-2 a-1. Using a wide set of hydrochemical parameters and landscape characteristics it was demonstrated that wetlands play a decisive role for the biogeochemical cycling of many metals. Comparing normalised fluxes of 13 different elements (Al, Ba, Ca, Cr, Cu, La, Mg, Na, Ni, Si, Sr, U and Y) 73% of the spatial variance could be explained based on the wetland coverage and the affinity for organic matter, the latter of which was quantified using thermodynamic modelling. Hence, it was possible to link the large-scale transport patterns of a wide range of metals to fundamental biogeochemical properties. When restraining the analysis to the smaller streams (<10 km2), the explanatory power increased to 88%. For elements such as Na and Si with low affinity for organic matter the decrease in wetland-dominated catchments corresponded closely to the area of mineral soils that had been replaced by peat, indicating that reduced weathering was the main cause of the decrease. For organophilic metals the decrease in wetland-dominated catchments was even greater, suggesting that there also was an accumulation of these metals in the peat. This was confirmed by investigating the distribution of radionuclides in local mire, which revealed considerable accumulation of uranium and thorium along the edges of the mire. Based on the inventories of uranium and thorium and their distribution in the peat it was concluded that the mire historically had been a sink for these metals and that it most likely will continue to be so for a long time to come. All and all, wetlands were estimated to decrease the fluxes of metals from the boreal forests to downstream lakes and oceans by 20-40%, depending on how strongly they bind to organic matter.
5

The Vegetational and Environmental Development of Lina Mire, Gotland from 6900-400 BC

Strandberg, Nichola January 2017 (has links)
Lina Mire, Gotland, is an area of archaeological significance and has a complex history of shoreline displacement. Archaeologists suspect that Lina Mire was once part of an important inland water system which connected the Littorina Sea with central Gotland. This study investigates vegetational and palaeoenvironmental changes of the Lina Mire area between 6900 – 400 BC (8850 – 2350 cal years BP) in order to better understand how the area has developed and how humans have impacted the vegetation. Pollen analysis, C/N ratios, organic matter and carbon content measurements were conducted. The chronology was based on 14C AMS dating of terrestrial macrofossils and bulk sediments. A transgression of the Littorina Sea at about 6550 BC (8500 cal years BP) inundated the Lina Mire basin, which was a lake at the time. The onset of cultivation was indicated by the presence of Hordeum (Barley or Wild Barley) during the Late Neolithic, 2630 BC (4580 cal years BP). Hordeum continued to grow during the Bronze Age when Cereals appeared at about 970 BC (2920 cal years BP). During the onset of cultivation during the Late Neolithic, the Lina Mire basin was a bay of the Littorina Sea. The Lina Mire basin remained connected with the Littorina Sea until isostatic uplift caused it to become isolated at about 1870 BC (3820 cal years BP). The lake overgrew and became a mire about 820 BC (2770 cal years BP).
6

Vegetational and landscape level responses to water level fluctuations in Finnish, mid-boreal aapa mire – aro wetland environments

Laitinen, J. (Jarmo) 09 September 2008 (has links)
Abstract Gradient, which is largely considered to be related to water level in mires, is referred to as a microtopographic mud bottom to carpet to lawn to hummock level gradient or the hummock level to intermediate level (lawn) to flark level gradient. The relationship of this vegetation gradient to various physical water level characteristics was studied. The general classification used in the present summary paper divides the aro vegetation of the inland of Northern Ostrobothnia into two main groups: (a) treeless fen aro vegetation (Juncus supinus, Carex lasiocarpa, Rhynchospora fusca, Molinia caerulea) and (b) heath aro vegetation (Polytrichum commune). The first group (a) was divided into fen aro wetlands with an approximately10 cm peaty layer at most and into aro fens with a peat layer thicker than 10 cm. The treatment of the water level gradient was divided into three main groups. (1) The mean water level correlated with mire surface levels (microtopographic gradient) within mires with slight water level fluctuations and partly within mires with considerable water level fluctuations. (2) Three habitat groups could be distinguished on the basis of the range of water level fluctuation i.e. mires with slight water level fluctuations, mires with considerable water level fluctuations and the aro vegetation with extreme water level fluctuations. (3) The timing of water level fluctuations indicated that there are different types of patterns within aro wetlands, the seasonal pattern being mainly a response to yearly snow melt and the several-year-fluctuation pattern being related to the regional groundwater table fluctuation in mineral soils (heath forests). A link was suggested between the stability of the water regime and peat production in local aapa mire – aro wetland environments. From the point of view of peatland plants the direction of variation from a stable to an unstable water regime in aapa mire – aro wetland environments represents a transition towards more and more harsh ecological conditions, partly forming a gradient through natural disturbance. A qualitative functional model was provided for the mire – aro wetland systems of Northern Ostrobothnia. The model supposes differences in the characteristics of peat between two functional complexes within a mire system. Finally, the model for local mire – aro wetland systems was converted to a general from: diplotelmic (acrotelm) mires were divided into two subtypes (diplotelmic water stabilization mires, diplotelmic water fluctuation mires) and the relationship of those subtypes to percolation mires and seasonal wetlands was considered.
7

Plant responses after drainage and restoration in rich fens

Mälson, Kalle January 2008 (has links)
<p>Rich fens are an important, but threatened, habitat type in the boreal landscape. In this thesis I have examined responses of rich fen vascular plants and bryophytes after drainage and restoration. </p><p>The effects of drainage on the rich fen flora were observed in a long time study and the responses were rapid and drastic. During an initial stage a rapid loss of brown mosses was observed, followed by increases of sedges and early successional bryophytes, and later by an expansion of dominants. Initial effects of hydrological restoration showed that rewetting can promote re-establishment of an ecologically functional rich fen flora, but has to be combined with other treatments, such as mowing or surface disturbance. </p><p>After restoration, re-establishment of locally extinct species may be hampered by dispersal limitations. To test if reintroductions could help to overcome dispersal limitations I performed transplantation studies with four common rich fens bryophytes to a rewetted site. The results showed that the species were able to establish, and that survival and growth were promoted by desiccation protection and liming. </p><p>I further examined competition among three of the most common bryophytes in natural boreal rich fens that usually occur mixed in a mosaic pattern but show small but important microtopographical niche separation. The results indicate similar competitive abilities among the species, and no case of competitative exclusion occurred. The results help to explain the coexistence of these species under natural conditions with microtopographic variation and repeated small scale natural disturbances. </p><p>Restoring a functional flora in drained rich fens is a complex task, which requires understanding of underlying causes of substrate degradation in combination with suitable restoration measures. The thesis suggests how the results can be used in practical restoration work, and also stresses the need for monitoring of restoration experiments over longer time. </p>
8

The ecological significance of sexual reproduction in peat mosses (Sphagnum)

Sundberg, Sebastian January 2000 (has links)
<p>Peat mosses (<i>Sphagnum</i>) are widely distributed and are a major component of mire vegetation and peat throughout the boreal and temperate regions. Most boreal <i>Sphagnum</i> species regularly produce sporophytes, but the ecological role of the spore has been questioned. This study shows that the spores can form a spore bank and have the ability to germinate and contribute to moss establishment whenever suitable conditions occur. The results suggest that spore production is important for explaining the wide distribution and omnipresence of <i>Sphagnum</i> in nutrient-poor wetlands. The results further imply that initial recruitment from spores predominates in <i>Sphagnum</i> after disturbance or formation of suitable habitats.</p><p> A series of experiments showed that addition of phosphorus-containing substrates, such as fresh plant litter or moose dung, resulted in spore establishment on bare, moist peat. A field experiment indicated establishment rates of about 1% of sown, germinable spores on peat with added substrates. Plant litter on moist soil, without a closed cover of bryophytes, is an important safe site for the establishment of <i>Sphagnum</i> spores. The results fit the observed pattern of colonisation by <i>Sphagnum</i> beneath <i>Eriophorum vaginatum</i> tussocks in mires severely disturbed by peat extraction. Successful long-distance dispersal was indicated by the occurrence of several regionally new or rare <i>Sphagnum</i> species in disturbed mires.</p><p>Spore number per sporophyte ranged among <i>Sphagnum</i> species from 18 500 to 240 000, with a trade-off between spore number and spore size. Annual spore production was estimated at 15 million spores per square metre on two investigated mires. Sporophyte production showed a large interannual variation. Sporophyte production was positively related to the amount of precipitation the preceding summer. This was probably because a high water level promoted gametangium formation. Spore dispersal occurred in July and August. The earlier timing of spore dispersal in the more drought-sensitive, hollow-inhabiting sphagna should reduce the risk of sporophytes drying out prematurely during summer droughts.</p><p>Spores kept refrigerated up to 13 years retained high germinability. A field experiment showed that <i>Sphagnum</i> can form a persistent spore bank, with a potential longevity of several decades.</p>
9

Peatland Bryophytes in a Changing Environment : Ecophysiological Traits and Ecosystem Function

Granath, Gustaf January 2012 (has links)
Peatlands are peat forming ecosystems in which not fully decomposed plant material builds up the soil. The sequestration of carbon into peat is mainly associated with the bryophyte genus Sphagnum (peat mosses), which dominate and literally form most peatlands. The responses of Sphagnum to environmental change help us to understand peatland development and function and to predict future changes in a rapidly changing world. In this thesis, the overarching aim was to use ecophysiological traits to investigate mechanisms behind the response of Sphagnum to elevated N deposition, and, processes connected to ecosystem shift and ecosystem function of peatlands. Regarding elevated N deposition, three experiments were performed at different scales (country-wide to greenhouse). Independent of scale and species, apical tissue N concentration increased with increasing N input until N saturation was reached. Maximum photosynthetic rate, a trait evaluating photosynthetic capacity, increased with N input and could be well predicted by tissue N concentration. Thus, the physiological responses of Sphagnum to N deposition are often positive and I found no evidence of toxic effects. Production did, however, not increase with N input, and results of the N:P ratio suggested that P limitation, and possibly other elements, might hamper growth under high N input. The effect of P limitation was, in contrast to current view, most pronounced in fast growing species indicating species specific responses to nutrient imbalance. I explored the puzzling, but historically frequently occurring, rich fen to bog ecosystem shift; a shift from a species-rich ecosystem dominated by brown mosses, to a species-poor one with greater carbon storage that is Sphagnum-dominated. The bog-dwelling species of Sphagnum grew well, to our surprise, when in contact with rich fen water but was not a strong competitor compared to rich fen Sphagnum species. If submerged under rich fen water (high pH), the bog Sphagnum species died while rich fen species of Sphagnum were unaffected. These results show that differences in two physiological traits (growth rate and tolerance to flooding) among species, can explain when a peatland ecosystem shift might occur. In the last study, the function of peatlands was related to trade-offs between traits and allometric scaling in Sphagnum. Results suggested that growth strategies are determined by the distribution of Sphagnum relative to the water table in order to minimize periods with suboptimal hydration. Allometric analyses stressed the importance of resource allocation among and within shoots (apical part vs. stem), although the allocation patterns in Sphagnum were not always consistent with those of vascular plants. Interestingly, data indicated a trade-off between photosynthetic rate and decomposition rate among Sphagnum species.
10

The ecological significance of sexual reproduction in peat mosses (Sphagnum)

Sundberg, Sebastian January 2000 (has links)
Peat mosses (Sphagnum) are widely distributed and are a major component of mire vegetation and peat throughout the boreal and temperate regions. Most boreal Sphagnum species regularly produce sporophytes, but the ecological role of the spore has been questioned. This study shows that the spores can form a spore bank and have the ability to germinate and contribute to moss establishment whenever suitable conditions occur. The results suggest that spore production is important for explaining the wide distribution and omnipresence of Sphagnum in nutrient-poor wetlands. The results further imply that initial recruitment from spores predominates in Sphagnum after disturbance or formation of suitable habitats. A series of experiments showed that addition of phosphorus-containing substrates, such as fresh plant litter or moose dung, resulted in spore establishment on bare, moist peat. A field experiment indicated establishment rates of about 1% of sown, germinable spores on peat with added substrates. Plant litter on moist soil, without a closed cover of bryophytes, is an important safe site for the establishment of Sphagnum spores. The results fit the observed pattern of colonisation by Sphagnum beneath Eriophorum vaginatum tussocks in mires severely disturbed by peat extraction. Successful long-distance dispersal was indicated by the occurrence of several regionally new or rare Sphagnum species in disturbed mires. Spore number per sporophyte ranged among Sphagnum species from 18 500 to 240 000, with a trade-off between spore number and spore size. Annual spore production was estimated at 15 million spores per square metre on two investigated mires. Sporophyte production showed a large interannual variation. Sporophyte production was positively related to the amount of precipitation the preceding summer. This was probably because a high water level promoted gametangium formation. Spore dispersal occurred in July and August. The earlier timing of spore dispersal in the more drought-sensitive, hollow-inhabiting sphagna should reduce the risk of sporophytes drying out prematurely during summer droughts. Spores kept refrigerated up to 13 years retained high germinability. A field experiment showed that Sphagnum can form a persistent spore bank, with a potential longevity of several decades.

Page generated in 0.0503 seconds