• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 25
  • 14
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 264
  • 178
  • 140
  • 75
  • 46
  • 45
  • 44
  • 35
  • 32
  • 31
  • 29
  • 28
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of Anode Purge on Polymer Electrolyte Membrane Fuel Cell Performance

Sauder, Rebecca 14 December 2009 (has links)
Polymer Electrolyte Membrane Fuel Cells (PEMFC) are promising power generating devices that use an electrochemical reaction to convert the energy from hydrogen fuel into usable electricity. One cell produces a small voltage so many cells are combined in series in order to produce a useful voltage, this configuration is referred to as a stack. Hydrogen is supplied to the anode of the stack in amounts greater than the electrochemical reaction requires to guarantee that enough hydrogen is available for every cell in the stack and to provide enough pressure throughout the cell flow channels for good mass transfer. For reasonable fuel efficiency, the anode outlet gas containing unconverted hydrogen is recycled (or recirculated) back to the anode inlet. PEMFC performance is highest when pure hydrogen fuel is supplied, however, nitrogen at the cathode will permeate through the membrane and accumulate in the anode gas with recirculation. Nitrogen buildup dilutes the hydrogen gas which adversely affects fuel cell performance at the anode. Also, in practical applications hydrogen-rich gas produced from reformed methane, called reformate, is used as the fuel. Reformate contains impurities such as, nitrogen, carbon dioxide, carbon monoxide, and sulfur compounds. This thesis will focus on trace levels of carbon monoxide entering in the hydrogen fuel stream, and the impact of contaminant build-up due to anode recirculation. Carbon monoxide adsorbs readily onto the platinum catalyst sites, called poisoning, thus decreasing PEMFC performance. In efforts to minimize the buildup of impurities and crossed over nitrogen, a portion of the anode outlet gas is periodically and continuously purged to the exhaust. How often the outlet gas is purged depends on a variable called the purge fraction. The purpose of this research is to study the effect of purge fraction on PEMFC performance, measured by the average cell voltage, for a Hydrogenics 10 cell stack. The operating parameters used for testing and the experimental apparatus were designed to mimic a Hydrogenics 8kW Hydrogen Fuel Cell Power Module. A pump connected between the anode outlet and anode inlet form the anode recirculation loop. In Phase 1 of the test program the effect of purge in the absence of carbon monoxide was studied to see if hydrogen dilution from nitrogen crossover and accumulation would cause significant cell voltage degradation. In Phase 2 the effect down to 0.2 ppm carbon monoxide was evaluated. The results showed that nitrogen buildup, in the absence of carbon monoxide, did not significantly penalize the cell performance in the range of purge fractions tested. However, for the same purge fraction but with as little as 0.2 ppm carbon monoxide present, the voltage loss was significant. A discussion of the effect of purge on the impurity concentration and the associated cell voltage degradation is detailed with particular emphasis on carbon monoxide poisoning.
12

Comprehensive, Consistent and Systematic Approach to the Mathematical Modeling of PEM Fuel Cells

Baschuk, Jeffrey 08 December 2006 (has links)
Polymer electrolyte membrane (PEM) fuel cells are a promising zero-emission power source for transportation applications. An important tool for advancing PEM fuel cell technology is mathematical modeling. Mathematical models can be used to provide insight on the physical phenomena occurring within a fuel cell, as well as aid in the design of fuel cells by simulating the effect of changes in design or operating conditions on performance. A comprehensive, consistent and systematic general formulation for a mathematical PEM fuel cell model is presented in this thesis. The formulation is developed by considering the fuel cell to be composed of several, co-existing phases. The conservation of mass, momentum, species, and energy are applied to each phase in the fuel cell. The interactions between the phases are modeled by applying a volume-averaging procedure to the conservation equations in each phase. The solution of the governing equations for the general formulation are beyond the scope of this thesis research. Instead, simplifying assumptions are applied to the general formulation in order to reduce the number of governing equations. The cell is assumed to be two-dimensional, steady state and isothermal. As well, the polymer electrolyte is assumed to be impervious to the gas phase and liquid water is assumed to exist only in the gas phase or polymer electrolyte. The numerical solution of the simplified formulation is implemented using the computer language of C++ and the finite volume method. The numerical solution provides details of the transport phenomena within the anode and cathode gas flow channels, electrode backing layers, and catalyst layers, as well as the polymer electrolyte membrane layer. These details include the bulk velocity of the gas phase; the concentrations of the species within the gas phase; the potential and current density in the solid phase and polymer electrolyte; the water content in the polymer electrolyte; and the distribution of reaction rate within the catalyst layers.
13

Mathematical Modeling of Transient Transport Phenomena in PEM Fuel Cells

Wu, Hao January 2009 (has links)
The dynamic performance of polymer electrolyte membrane fuel cells (PEMFCs) is of great interest for mobile applications such as in automobiles. However, the length scale of a PEM fuel cell's main components are ranging from the micro over the meso to the macro level, and the time scales of various transport processes range from milliseconds up to a few hours. This combination of various spatial and temporal scales makes it extremely challenging to conduct in-situ measurements or other observations through experimental means. Thus, numerical simulation becomes a very important tool to help understand the underlying electrochemical dynamics and transient transport phenomena within PEM fuel cells. In this thesis research, a comprehensive 3D model is developed which accounts for the following transient transport mechanisms: the non-equilibrium phase transfer between the liquid water and water vapor, the non-equilibrium membrane water sorption/desorption, liquid water transport in the porous backing layer, membrane hydration/dehydration, gas diffusion in the porous backing layer, the convective gas flow in the gas channel, and heat transfer. Furthermore, some of the conventionally used modeling assumptions and approaches have been incorporated into the current model. Depending on the modeling purposes, the resulting model can be readily switched between steady and unsteady, isothermal and non-isothermal, single- and multi- phases, equilibrium and non-equilibrium membrane sorption/desorption, and three water production assumptions. The governing equations which mathematically describe these transport processes, are discretized and solved using a finite-volume based commercial software, Fluent, with its user coding ability. To handle the significant non-linearity stemming from the multi-water phase transport, a set of numerical under-relaxation techniques is developed using the programming language C. The model is validated with experimental results and good agreements are achieved. Subsequently, using this validated model numerical studies have been carried out to probe various transient transport phenomena within PEM fuel cells and the cell dynamic responses with respect to different operating condition changes. Furthermore, the impact of flow-field design on the cell performance is also investigated with the three most common flow channel designs.
14

Effect of Anode Purge on Polymer Electrolyte Membrane Fuel Cell Performance

Sauder, Rebecca 14 December 2009 (has links)
Polymer Electrolyte Membrane Fuel Cells (PEMFC) are promising power generating devices that use an electrochemical reaction to convert the energy from hydrogen fuel into usable electricity. One cell produces a small voltage so many cells are combined in series in order to produce a useful voltage, this configuration is referred to as a stack. Hydrogen is supplied to the anode of the stack in amounts greater than the electrochemical reaction requires to guarantee that enough hydrogen is available for every cell in the stack and to provide enough pressure throughout the cell flow channels for good mass transfer. For reasonable fuel efficiency, the anode outlet gas containing unconverted hydrogen is recycled (or recirculated) back to the anode inlet. PEMFC performance is highest when pure hydrogen fuel is supplied, however, nitrogen at the cathode will permeate through the membrane and accumulate in the anode gas with recirculation. Nitrogen buildup dilutes the hydrogen gas which adversely affects fuel cell performance at the anode. Also, in practical applications hydrogen-rich gas produced from reformed methane, called reformate, is used as the fuel. Reformate contains impurities such as, nitrogen, carbon dioxide, carbon monoxide, and sulfur compounds. This thesis will focus on trace levels of carbon monoxide entering in the hydrogen fuel stream, and the impact of contaminant build-up due to anode recirculation. Carbon monoxide adsorbs readily onto the platinum catalyst sites, called poisoning, thus decreasing PEMFC performance. In efforts to minimize the buildup of impurities and crossed over nitrogen, a portion of the anode outlet gas is periodically and continuously purged to the exhaust. How often the outlet gas is purged depends on a variable called the purge fraction. The purpose of this research is to study the effect of purge fraction on PEMFC performance, measured by the average cell voltage, for a Hydrogenics 10 cell stack. The operating parameters used for testing and the experimental apparatus were designed to mimic a Hydrogenics 8kW Hydrogen Fuel Cell Power Module. A pump connected between the anode outlet and anode inlet form the anode recirculation loop. In Phase 1 of the test program the effect of purge in the absence of carbon monoxide was studied to see if hydrogen dilution from nitrogen crossover and accumulation would cause significant cell voltage degradation. In Phase 2 the effect down to 0.2 ppm carbon monoxide was evaluated. The results showed that nitrogen buildup, in the absence of carbon monoxide, did not significantly penalize the cell performance in the range of purge fractions tested. However, for the same purge fraction but with as little as 0.2 ppm carbon monoxide present, the voltage loss was significant. A discussion of the effect of purge on the impurity concentration and the associated cell voltage degradation is detailed with particular emphasis on carbon monoxide poisoning.
15

Closed Loop System Identification of a Torsion System / Systemidentifiering av ett återkopplat torsionssystem

Myklebust, Andreas January 2009 (has links)
A model is developed for the Quanser torsion system available at Control Systems Research Laboratory at Chulalongkorn University. The torsion system is a laboratory equipment that is designed for the study of position control. It consists of a DC motor that drives three inertial loads that are coupled in series with the motor, and where all components are coupled to each other through torsional springs. Several nonlinearities are observed and the most significant one is an offset in the input signal, which is compensated for. Experiments are carried out under feedback as the system is marginally stable. Different input signals are tested and used for system identification. Linear black-box state-space models are then identified using PEM, N4SID and a subspace method made for closed-loop identification, where the last two are the most successful ones. PEM is used in a second step and successfully enhances the parameter estimates from the other algorithms.
16

Comprehensive, Consistent and Systematic Approach to the Mathematical Modeling of PEM Fuel Cells

Baschuk, Jeffrey 08 December 2006 (has links)
Polymer electrolyte membrane (PEM) fuel cells are a promising zero-emission power source for transportation applications. An important tool for advancing PEM fuel cell technology is mathematical modeling. Mathematical models can be used to provide insight on the physical phenomena occurring within a fuel cell, as well as aid in the design of fuel cells by simulating the effect of changes in design or operating conditions on performance. A comprehensive, consistent and systematic general formulation for a mathematical PEM fuel cell model is presented in this thesis. The formulation is developed by considering the fuel cell to be composed of several, co-existing phases. The conservation of mass, momentum, species, and energy are applied to each phase in the fuel cell. The interactions between the phases are modeled by applying a volume-averaging procedure to the conservation equations in each phase. The solution of the governing equations for the general formulation are beyond the scope of this thesis research. Instead, simplifying assumptions are applied to the general formulation in order to reduce the number of governing equations. The cell is assumed to be two-dimensional, steady state and isothermal. As well, the polymer electrolyte is assumed to be impervious to the gas phase and liquid water is assumed to exist only in the gas phase or polymer electrolyte. The numerical solution of the simplified formulation is implemented using the computer language of C++ and the finite volume method. The numerical solution provides details of the transport phenomena within the anode and cathode gas flow channels, electrode backing layers, and catalyst layers, as well as the polymer electrolyte membrane layer. These details include the bulk velocity of the gas phase; the concentrations of the species within the gas phase; the potential and current density in the solid phase and polymer electrolyte; the water content in the polymer electrolyte; and the distribution of reaction rate within the catalyst layers.
17

Mathematical Modeling of Transient Transport Phenomena in PEM Fuel Cells

Wu, Hao January 2009 (has links)
The dynamic performance of polymer electrolyte membrane fuel cells (PEMFCs) is of great interest for mobile applications such as in automobiles. However, the length scale of a PEM fuel cell's main components are ranging from the micro over the meso to the macro level, and the time scales of various transport processes range from milliseconds up to a few hours. This combination of various spatial and temporal scales makes it extremely challenging to conduct in-situ measurements or other observations through experimental means. Thus, numerical simulation becomes a very important tool to help understand the underlying electrochemical dynamics and transient transport phenomena within PEM fuel cells. In this thesis research, a comprehensive 3D model is developed which accounts for the following transient transport mechanisms: the non-equilibrium phase transfer between the liquid water and water vapor, the non-equilibrium membrane water sorption/desorption, liquid water transport in the porous backing layer, membrane hydration/dehydration, gas diffusion in the porous backing layer, the convective gas flow in the gas channel, and heat transfer. Furthermore, some of the conventionally used modeling assumptions and approaches have been incorporated into the current model. Depending on the modeling purposes, the resulting model can be readily switched between steady and unsteady, isothermal and non-isothermal, single- and multi- phases, equilibrium and non-equilibrium membrane sorption/desorption, and three water production assumptions. The governing equations which mathematically describe these transport processes, are discretized and solved using a finite-volume based commercial software, Fluent, with its user coding ability. To handle the significant non-linearity stemming from the multi-water phase transport, a set of numerical under-relaxation techniques is developed using the programming language C. The model is validated with experimental results and good agreements are achieved. Subsequently, using this validated model numerical studies have been carried out to probe various transient transport phenomena within PEM fuel cells and the cell dynamic responses with respect to different operating condition changes. Furthermore, the impact of flow-field design on the cell performance is also investigated with the three most common flow channel designs.
18

Interaction of Polyethylene Glycol and Water in Proton Exchange Membrane Nafion 117

Huang, Rui-Yi 05 February 2012 (has links)
Nafion has been the mostly used perfluorosulfonated proton exchange membrane (PEM) in fuel cell. Although a number of problems remain to be resolved on the application of Nafion as a PEM, a less expensive alternative PEM has not been found mainly because of its high proton conductivity. Therefore, much effort has been invested to modify it or find a better and inexpensive material. The exploration of the methods to counter degradation and aging of Nafion is also an important direction of research. In this work, the behavior of PEG in Nafion is investigated with solid state NMR spectroscopy. A series of samples with different PEG sizes and concentrations in Nafion was prepared and the variable temperature proton spectra and longitudinal relaxation times (T1) were measured on two spectrometers. Some interesting findings were made, e.g., the 1H chemical shift of water in concentrated PEG solution decrease while its T1 increase, the higher the concentration of PEG, the larger the increase (of water 1H chemical shift) or decrease (of water 1H T1). These findings provide valuable information on further improving the performance of Nafion in proton conductivity and durability.
19

A feasibility study of internal evaporative cooling for proton exchange membrane fuel cells

Snyder, Loren E 12 April 2006 (has links)
An investigation was conducted to determine the feasibility of using the technique of ultrasonic nebulization of water into the anode gas stream for evaporative cooling of a Proton Exchange Membrane (PEM) fuel cell. The basic concept of this form of internal evaporative cooling of the PEM fuel cell is to introduce finely atomized liquid water into the anode gas stream, so that the finely atomized liquid water adsorbs onto the anode and then moves to the cathode via electro-osmotic drag, where this water then evaporates into the relatively dry cathode gas stream, carrying with it the waste thermal energy generated within the fuel cell. The thermal and electrical performance of a 50 cm2 PEM fuel cell utilizing this technique was compared to the performance obtained with conventional water management. Both techniques were compared over a range of humidification chamber temperatures for both the anode and cathode gas streams so as to determine the robustness of the proposed method. The proposed method produced only meager levels of evaporative cooling (at best 2 watts, for which a minimum of 30 watts was required for adequate cooling), but the average cell voltage increased considerably (as much as a 10% gain), and the technique increased the fault tolerance of the fuel cell (the Nafion™ membrane did not dry out even if cell temperature went well in excess of 70° C despite both anode and cathode humidification temperatures of 55° C). An interesting phenomena was also observed wherein the fuel cell voltage oscillated regularly with a period of tens of seconds, and that the amplitude of this oscillation corresponded inversely with the level of humidification received by the fuel cell.
20

Effects of Open Ratio of Flow Field Plates on a Micro PEM Fuel Cell Performance and Its Transient Thermal Behavior

Chu, Kuan-ming 03 January 2009 (has links)
In this study, copper metals were used to fabricate five different flow field plates with various open ratios using MEMS technology. Five samples were prepared for experiments with rib width varying as 150, 200, 300, 450, and 600 £gm at a fixed channel width (300 £gm). The open ratio of flow field plates was varied from 60.0% to 37.9%. Experiments with different operating parameters of anode/cathode pressure drop, cell operating temperature, and gas backpressure were conducted. Furthermore, a simple lumped capacitance model was used to predict the temperature evolution of the fuel cell system. Then, the optimum flow field design and cell operating parameters were finally found. Based on the aforementioned experiments an optimal open ratio ofunity was found like 49.2%. Further, an optimal open ratio in terms of the net power gain factor (= power gain/power consumption) of 38.7% can be obtained for the cases under study. Durability and reliability for copper bipolar plate were examined for long range tests (each run with at least 5 hours duration for consecutive two months). This strongly suggests that copper sheets can be considered as one of possible candidates for flow field material.

Page generated in 0.0413 seconds