• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 43
  • 37
  • 23
  • 12
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 423
  • 282
  • 279
  • 102
  • 73
  • 61
  • 52
  • 34
  • 32
  • 27
  • 27
  • 25
  • 22
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development of multifunctional siRNA delivery systems and their applications in modulating gene expression in a cardiac ischemia-reperfusion model

Liu, Jie 08 June 2015 (has links)
RNA interference (RNAi) is a conservative post-transcriptional gene silencing mechanism that can be mediated by small interfering RNAs (siRNAs). Given the effectiveness and specificity of RNAi, the administration of siRNA molecules is a promising approach to cure diseases caused by abnormal gene expression. However, as siRNA is susceptible to degradation by nucleases and it can hardly penetrate cell membranes due to its polyanionic nature, a successful translation of the RNAi mechanism for therapeutic purposes is contingent on the development of safe and efficient delivery systems. This dissertation described the development of novel siRNA delivery systems on the basis of polymeric and dendrimeric materials and also demonstrated the application of one optimized delivery system to deliver therapeutic siRNAs in a cardiovascular disease model in vivo. We studied a linear peptide polymer made from cell penetrating peptide monomers and investigated the contribution of the polymeric structure, degradability, and ligand conjugation to the siRNA loading capacity, biocompatibility, and transfection efficiency of polymeric materials. With the obtained knowledge and experience, we invented a neutral crosslinked delivery system aiming to solve the inherent drawbacks of traditional cationic delivery systems that are based on electrostatic interactions. The new concept utilized buffering amines to temporarily bind siRNA and a crosslinking reaction to immobilize the formed particles, and targeting ligands modified on the neutral dendrimer surface further enhanced the interactions between the delivery vehicles and target cells. The obtained delivery system allowed stability, safety, controllability, and targeting ability for siRNA delivery, and the method developed here could be transformed to other polymeric or dendrimeric cationic materials to make them safer and more efficient. To exploit the therapeutic potential of siRNA delivery, we developed a tadpole-shaped dendrimeric material to deliver siRNA against an Angiotensin II receptor in a rat ischemia-reperfusion model. Our results showed that the nonaarginine-conjugated tadpole dendrimer was capable of delivering siRNA effectively to cardiac cells both in vitro and in vivo, and the successful down-regulation of the Angiotensin II receptor preserved the cardiac functions and reduced the infarct size post-myocardial infarction. This dissertation paves a way for transforming multifunctional non-viral siRNA delivery systems into potent therapeutic strategies for the management of cardiovascular diseases.
52

Distribution of beaver impacted peatlands in the Rocky Mountains

2013 December 1900 (has links)
Peatlands provide a variety of ecosystem services including carbon sequestration, nutrient cycling and increased biodiversity, and are thus an important Canadian natural resource. Mountain peatlands, including those in the foothill region of the Canadian Rockies are particularly important due to their proximity to headwater streams which supply the Prairie Provinces with water. Yet, distribution of peatlands in the Canadian Rocky Mountains is unknown. There is also a lack of understanding of the form of these peatlands and the processes influencing them. The purpose of this research is to improve our understanding of Canadian mountain peatlands in terms of their abundance, distribution and subsurface form. Specific objectives are to: determine the distribution of beaver impacted wetlands in the study area; quantify the proportion of these which are peatlands; determine the impact beaver have on one hydrological variable, the area of open water and; describe the stratigraphy of peatlands with beaver at their surface. Beaver impacted wetland distribution was assessed through manual analysis of georeferenced aerial photographs. Combining these data with an existing GIS layer provided the basis of a wetland inventory of the region, allowing wetlands to be separately inventoried by physiographic location (Mountain and Foothills) and jurisdiction (Alberta Parks, Municipal Districts, Improvement Districts and First Nations Reserve). Approximately 75% of wetlands are located in the Foothills and Municipal District areas. Beaver impact is evident in 30% of the 529 wetlands inventoried, with the highest number in protected areas. Area of open water on wetlands, as assessed by manual analysis of aerial photographs, indicated that beaver impacted sites have on average approximately ten times more open surface water area than non- beaver impacted sites. In total, 81 wetlands were ground-truthed of which 77% were peat-forming wetlands or peatlands. Ground penetrating radar surveys and soil coring performed at 9 peatlands with beaver activity at their surface showed structural differences from those peatlands for which ecosystem services are described in the literature in that they are stratigraphically complex. Little is known about the factors affecting how this form develops, and this requires further study. The distribution of peatlands in the study area highlights them as important landscape units, and that in order to best manage them, further research is required into the various influences on their hydrological and ecological function.
53

Generation Of Cell-Penetrating Heme Oxygenase Proteins To Improve The Resistance Of Steatotic Livers To Reperfusion Injury Following Transplantation

Livingstone, Scott 30 January 2012 (has links)
Liver transplantation is the only life-saving treatment for patients with end-stage liver disease; however, organ availability is insufficient to meet demands. Steatotic livers are extended criteria donor (ECD) organs that could be used for transplantation if not for an increased susceptibility ischemia reperfusion injury (IRI). Heme oxygenase-1 is a gene, that when upregulated has be shown to reduce IRI in animal models of transplantation. Increasing HO-1 activity in steatotic livers by delivery of a functional cell-penetrating HO-1 protein (through the use of cell-penetrating peptides) may provide protection against IRI, making these organs useful for transplantation. The purpose of this thesis was the generation and testing of a cell-penetrating HO-1 protein. HO-1 and EGFP gene sequences were cloned into the pET-28B(+) vector in frame with a CPP or TAT sequence. Resulting plasmids were cloned into E. coli, and protein expression was induced using IPTG. Proteins were purified using Ni-NTA affinity chromatography under denaturing and non-denaturing conditions. Non-denatured proteins were tested for HO-1 activity and the ability of both denatured and non-denatured proteins to transduce cells in vitro was tested by fluorescence microscopy. The cell-penetrating ability of nondenatured proteins was further tested in J774, HepG2 and HUVEC cells using immunofluorescence. Five HO-1 and two EGFP cell-penetrating proteins were generated expressed and purified successfully. Purified non-denatured HO-1 retains its enzymatic activity. Non-denatured CPP-EGFP and CPP-HO1 penetrated cells more effectively than their denatured counterparts. CPP-EGFP and CPP-HO1 proteins are able to penetrate multiple cell types in vitro. Successful generation and testing of a cell-penetrating HO-1 protein, for use in an animal model of steatotic liver transplantation. This protein demonstrates promise for use as a potential therapeutic agent in the field of liver transplantation.
54

Cell-penetrating peptides and oligonucleotides : Design, uptake and therapeutic applications

Muñoz-Alarcón, Andrés January 2015 (has links)
Regulation of biological processes through the use of genetic elements is a central part of biological research and also holds great promise for future therapeutic applications. Oligonucleotides comprise a class of versatile biomolecules capable of modulating gene regulation. Gene therapy, the concept of introducing genetic elements in order to treat disease, presents a promising therapeutic strategy based on such macromolecular agents. Applications involving charged macromolecules such as nucleic acids require the development of the active pharmaceutical ingredient as well as efficient means of intracellular delivery. Cell-penetrating peptides are a promising class of drug delivery vehicles, capable of translocation across the cell membrane together with molecules otherwise unable to permeate cells, which has gained significant attention. In order to increase the effectiveness of cell-penetrating peptide-mediated delivery, further understanding of the mechanisms of uptake is needed in addition to improved design to make the cell-penetrating peptides more stable and, in some cases, targeted. This thesis encompasses four scientific studies aimed at investigating cell-penetrating peptide and oligonucleotide designs amenable to therapeutic applications as well as elucidating the mechanisms underlying uptake of cell-penetrating peptide:oligonucleotide nanoparticles. It also includes an example of a therapeutic application of cell-penetrating peptide-mediated delivery of oligonucleotides. Paper I presents a study evaluating a range of chemically modified anti-miRNAs for use in the design of therapeutic oligonucleotides. All varieties of oligonucleotides used in the study target miRNA-21 and are evaluated using a dual luciferase reporter system. Paper II introduces a novel cell-penetrating peptide, PepFect15, aiming at combining the desirable properties of improved peptide stability and efficient cellular uptake with a propensity for endosomal escape, to produce a delivery vector well suited for delivery of oligonucleotides. The performance of this new cell-penetrating peptide was evaluated based on its delivery capabilities pertaining to splice-correcting oligonucleotides and anti-miRNAs. Paper III investigates the involvement of scavenger receptor class A in the uptake of various cell-penetrating peptides together with their oligonucleotide cargo. Finally, paper IV aims at using cell-penetrating peptide-mediated delivery to improve the efficiency of telomerase inhibition by antisense oligonucleotides targeting the telomerase enzyme ribonucleotide component. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
55

Specificity of antisense oligonucleotide derivatives and cellular delivery by cell-penetrating peptides

Guterstam, Peter January 2009 (has links)
Atypical gene expression has a major influence on the disease profile of several severe human disorders. Oligonucleotide (ON) based therapeutics has opened an avenue for compensating deviant protein expression by acting on biologically important nucleic acids, mainly RNAs. Antisense ONs (asONs) can be designed to target complementary specific RNA sequences and thereby to influence the corresponding protein synthesis. However, cellular uptake of ONs is poor and is, together with the target specificity of the asONs, the major limiting factor for the development of ON based therapeutics. In this thesis, the mechanisms of well-characterized cell-penetrating peptides (CPPs) are evaluated and CPPs are adapted for cellular ON-delivery. The functionality of ON derivatives in cells is investigated and by optimization of asONs, targeting pre-messenger RNA, high efficiency and specificity is achieved. The optimization of the asONs is based on sequence design and through the choice of nucleic acid analogue composition. It is concluded that asONs, partly composed of locked nucleic acids are attractive for splice-switching applications but these mixmers must be designed with limited number of locked nucleic acid monomers to avoid risk for off-target activity. A protocol allowing for convenient characterization of internalization routes for CPPs is established and utilized. A mechanistic study on cellular CPP uptake and translocation of associated ON cargo reveals the importance of the optimal combination of for example charge and hydrophobicity of CPPs for efficient cellular uptake. Formation of non-covalent CPP:ON complexes and successful cellular delivery is achieved with a stearylated version of the well-recognized CPP, transportan 10. The results illustrate that CPPs and ON derivatives have the potential to become winning allies in the competition to develop therapeutics regulating specific protein expression patterns involved in the disease profile of severe human disorders. / At the time of doctoral defense, the following papers were unpublished and had s status as follows: Paper 4: Accepted.Peper 5: In press. / VINNOVA-SAMBIO Multidisciplinary BIO
56

Investigations of rc-loaded bow-tie antennas for impulse ground penetrating radar applications

Su, Hong 19 September 2006 (has links)
This thesis reports on the investigations of resistive-capacitive (RC) loaded bow-tie antennas with special emphasis on impulse ground penetrating radar applications. Impulse radiation for ground penetrating radar is a challenging research topic because of the unique problem arising from impulse radiation: late-time ringing, which usually masks the important echo signals from the targets. While resistive loading is a common solution for eliminating late-time ringing, use of resistive loading typically sacrifices the radiation efficiency. In this thesis, a resistive-capacitive loading technique is investigated for a circular bow-tie antenna in the attempt to reduce/suppress the late-time ringing as well as to maintain a relatively high radiation efficiency. To implement the system, a microstrip differentiator, which converts a monopulse into a Gaussian-like monocycle to be used as input impulse, is presented. Further, specially designed coplanar waveguide/coplanar strip (CPW/CPS) baluns embedded with Chebyshev transformers of characteristic impedance up to 120 have been constructed and tested. To evaluate the system, instead of using the conventional peak voltage value of the radiated waveform, average radiated energy, average ringing energy, relative radiation efficiency and relative ringing efficiency are utilized and these metrics are easily established using low-cost low-sensitivity probes. Measurement results show that the RC-loading scheme is functioning as expected and the impulse system as a whole is capable of reducing the late-time ringing energy to 50% while maintaining average radiation energy as 83% when compared with capacitive loading cases.
57

Structures, toxicity and internalization of cell-penetrating peptides

Eiríksdóttir, Emelía January 2010 (has links)
Cellular internalization is a highly regulated process controlled by proteins in the plasma membrane. Large and hydrophilic compounds, in particular, face difficulties conquering the plasma membrane barrier in order to gain access to intracellular environment. This puts serious constrains on the drug industry since many drugs are hydrophilic. Several methods aiming at aiding the cellular internalization of otherwise impermeable compounds have therefore been developed. One such class, so-called cell-penetrating peptides (CPPs), emerged around twenty years ago. This group constitutes hundreds of peptides that have shown a remarkable ability in translocating diverse molecules, ranging from small molecules to large proteins, over the cell membrane. The internalization mechanism of CPPs has been questioned ever since the first peptides were discovered. Initially, the consensus in the field was direct translocation but endocytosis has gradually gained ground. The confusion and the disunity within this research field through the years proceeds from divergent results between research groups that hamper comparison of the peptides. This thesis aims at characterizing several well-established CPPs with comprehensive studies on cellular toxicity, secondary structure and cellular internalization kinetics. The results demonstrate that CPPs act in general in a low or non-toxic way, but the apparent toxicity is both peptide- and cell line-dependent. Structural studies show that the CPPs have a diverse polymorphic behavior ranging from random coil to structured β-sheet or α-helix, depending on the environment. The ability to change secondary structure could be the key to the internalization property of the CPPs. Internalization kinetic studies of CPP conjugates reveal two sorts of internalization profiles, either fast curves that cease in few minutes or slow curves that peak in tens of minutes. Furthermore, improved synthesis of CPP conjugates is demonstrated. In conclusion, the studies in this thesis provide useful information about cytotoxicity and structural diversity of CPPs, and emphasize the importance of kinetic measurements over end-point studies in order to give better insights into the internalization mechanisms of CPPs. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted.</p>
58

Investigations of rc-loaded bow-tie antennas for impulse ground penetrating radar applications

Su, Hong 19 September 2006 (has links)
This thesis reports on the investigations of resistive-capacitive (RC) loaded bow-tie antennas with special emphasis on impulse ground penetrating radar applications. Impulse radiation for ground penetrating radar is a challenging research topic because of the unique problem arising from impulse radiation: late-time ringing, which usually masks the important echo signals from the targets. While resistive loading is a common solution for eliminating late-time ringing, use of resistive loading typically sacrifices the radiation efficiency. In this thesis, a resistive-capacitive loading technique is investigated for a circular bow-tie antenna in the attempt to reduce/suppress the late-time ringing as well as to maintain a relatively high radiation efficiency. To implement the system, a microstrip differentiator, which converts a monopulse into a Gaussian-like monocycle to be used as input impulse, is presented. Further, specially designed coplanar waveguide/coplanar strip (CPW/CPS) baluns embedded with Chebyshev transformers of characteristic impedance up to 120 have been constructed and tested. To evaluate the system, instead of using the conventional peak voltage value of the radiated waveform, average radiated energy, average ringing energy, relative radiation efficiency and relative ringing efficiency are utilized and these metrics are easily established using low-cost low-sensitivity probes. Measurement results show that the RC-loading scheme is functioning as expected and the impulse system as a whole is capable of reducing the late-time ringing energy to 50% while maintaining average radiation energy as 83% when compared with capacitive loading cases.
59

Multi-component peptide-based carriers for gene delivery

Shu Yang Unknown Date (has links)
The feasibility of most gene therapy strategies depends on the efficient delivery of DNA to target cells and tissues. Current gene delivery carriers can be divided into two classes: viral and non-viral delivery systems. Although the viral carriers are highly efficient due to their invasive nature, safety concerns may restrict their application in clinical settings. Synthetic non-viral carriers attract increasing attention because they are less toxic and allow readily modification. Non-viral carrier mediated gene delivery involves several processes. They must condense DNA into small particles, allow membrane penetration and protect DNA from extracellular and intracellular degradative enzymes. In the present study, a small library of carriers containing various combinations of cell penetrating peptide TAT, SV40 large T protein nuclear localisation signal (NLS) and cationic dendrimer of 7 lysine residues (DEN) was synthesised and tested for their ability to deliver DNA to mammalian cells. We evaluated the contribution of each component as well as the combination of the components on DNA condensation, uptake and gene expression. It was found that all carriers condensed DNA and protected DNA from DNase degradation. We showed that the TAT peptide was essential, but not sufficient, for uptake of exogenous DNA. The addition of either NLS or DEN significantly enhanced uptake. The most efficient carrier contained all three components (DEN-NLS-TAT). The carriers were able to deliver DNA in the presence of serum and were non-toxic to cells at up to 30 μM. However, for those peptides that facilitated DNA uptake, the complexes were targeted to intracellular compartments that required a fusogenic agent, such as chloroquine, before gene expression was observed. Modifications were introduced to the initial carrier library in order to circumvent the chloroquine dependence. The addition of cell penetrating peptide penetratin, virus derived fusogenic peptide or lipoamino acid C12 enhanced either DNA uptake or endosomal release. However, none of the modified carriers were able to produce high level transgene expression in the absence of chloroquine. We also found that the carriers containing lipid components were able to deliver DNA to T-lymphocytes derived cells, which are usually resistant to transfection. However, the toxicity of the lipid-based carriers needs to be reduced before further application. We also evaluated the function of chloroquine as a gene expression enhancer. We demonstrated that chloroquine did not enhance expression solely by promoting endosomal release. This was supported by the fact that fusogenic peptide and endosomal disruptive reagents (bafilomycin A1 and monensin) did not improve gene expression. Other properties of chloroquine, such as DNA protection and transcription enhancement, may also contribute to gene expression. We characterised the uptake mechanism of DEN-NLS-TAT in HeLa cell lines. We found that the uptake of DEN-NLS-TAT/DNA complex in HeLa cell line was mainly via receptor-mediated endocytosis and caveolae endocytosis. Moreover, various intracellular processes, such as intact cytoskeleton and microtubule network, tyrosine and PI 3 kinase activity, and membrane cholesterol were also required for the uptake of the carrier/DNA complex. In conclusion, the results from the present study demonstrated that multi-component peptide-based carriers are versatile carriers for the delivery of plasmid DNA in human cells. The results have improved our understanding of the role of chloroquine as a widely used gene expression enhancer which may be useful in the future improvement of non-viral gene delivery carriers. A strategy to overcome the dependence on chloroquine for gene expression or reduce the toxicity of chloroquine will be necessary for further in vivo applications. The current carrier library may also be used to delivery other cargos such as siRNA or protein to human cells.
60

Nondestructive testing of concrete bridge decks using ground penetrating radar and the chain drag method

Scheff, Jerry J. January 1998 (has links)
Thesis (M.S.)--West Virginia University, 1998. / Title from document title page. Document formatted into pages; contains xv, 144 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 122-124).

Page generated in 0.1175 seconds