• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 43
  • 37
  • 23
  • 12
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 423
  • 282
  • 279
  • 102
  • 73
  • 61
  • 52
  • 34
  • 32
  • 27
  • 27
  • 25
  • 22
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A Study of the Dayside High-Lattitude Ionospheric Electrodynamics During Extended Solar Minimum

Jenniges, Janelle V. 01 May 2015 (has links)
The high-latitude electric eld fall-o region connects convection in the polar cap to the region where ring currents modify the penetration electric field equatorward of the polar cap boundary. This region is often overlooked because it falls between the limits of low latitude and high-latitude ionospheric models. However, penetrating electric fields cause large changes in ion composition; and therefore, correctly modeling the electric fields and plasma drift in this region aids in correctly specifying the ionosphere. Many ionospheric models use the Kp index as a physical driver, and so the latitude dependence of the plasma drift in the fall-o region was investigated as a function of Kp using Defense Meteorological Satellite Program ion drift data from the 2007{2010 solar minimum. Both the dusk and dawn sectors were analyzed and t to analytical functions describing the fall-o with decreasing latitude. The latitude dependencies were found to dier in the dusk and dawn sectors with a factor of two increase in the expansion of the duskside polar cap radius and auroral region over the dawnside. Additionally, the low-Kp polar cap radius was found to be five degrees smaller than the radius currently used in simple ionospheric models.
72

Physical and chemical properties of ice in a main valley glacier and a tributary glacier, Gornergletscher, Canton Valais, Switzerland

Quick, Annika M. 08 July 2010 (has links) (PDF)
Glacier models often fail to incorporate the geometry and/or physical properties of tributaries included in complex glaciers. Tributary glaciers have different source areas and flow conditions than the adjacent main valley glacier. Ice cores (~3m depth) and surface samples (<0.5m depth) were collected from Grenzgletscher (main valley glacier) and Zwillingsgletscher (tributary glacier) in the Gornergletscher system of the Swiss Alps. Stable water isotopes indicate seasonal variation, showing 1-2 annual layers. The mean d18O for Grenzgletscher is ~4.8‰ lower than for Zwillingsgletscher. This difference may be accounted for in part by elevation differences between the accumulation areas (~1.1‰ δ18O), increased avalanching in Grenzgletscher (~1.8 ‰ δ18O), and by varying climatic conditions at the time of precipitation (~0.9-1.4‰ variation in δ18O). Using a kinematic ice flow model, core ages were estimated using effective annual layer thickness (based on seasonal variations), annual accumulation rate and ice thickness. The Grenzgletscher core is ~4 years older than the Zwillingsgletscher core. Based on ages and flow distances, the tributary has a lower flow velocity (63-87 m/yr) compared to Grenzgletscher (61-134 m/yr). To understand thermal properties of the tributary, a 775 m GPR survey (200 MHz) was conducted along a flow line of Zwillingsgletscher. Topographic waves (ogives) observed on the surface are mimicked by the onset of reflectivity 10-20 m below the surface. Reflective regions are interpreted as warmer ice at the pressure melting point, overlain by colder ice. This thermal structure is likely related to acceleration through an ice fall. Since most tributary glaciers include ice falls, thermal properties of tributary glaciers may be different from those of the main valley glacier. The properties and geometry of tributary glaciers are significantly different from main valley glaciers and should therefore be incorporated into glacier models in the future.
73

Practical Use of Ground Penetrating Radar: A Survey of Coastal Historic Cemeteries in Brevard County, Florida

Boynton, William 01 January 2015 (has links)
Ground Penetrating Radar (GPR) research conducted in coastal environments is one area that is lacking in archaeology. Surveys conducted in this type of environment afford the opportunity to evaluate the practical use GPR under field conditions. Coastal environments are effective for this evaluation because they offer a host of conditions that GPR surveys do not normally encounter at one time. The relationship of the land to the coast, sub-surface conditions and reliable survey areas create a "perfect storm" to test how practical the use of GPR is in coastal environments. This research is a study of homestead cemeteries situated within the boundaries of Cape Canaveral Air Force Station (CCAFS), using GPR. The research has three main goals. The first is to utilize GPR to identify if there are any unknown burials at CCAFS. The second is to test the practical effectiveness of GPR in coastal environments where high water table, geology and saline conditions can limit the capability of the technique to resolve subsurface features. The third is to correlate data from the GPR survey with ethnographic information to enhance the protection and maintenance with what is already available for the cemeteries. Research methods include field-based geophysical data collection in addition to archival and ethnographic historic research. The field component, to which this research pertains, entailed an on-site GPR survey at the nine sites on Cape Canaveral Air Force Station. This was followed by analysis of the information from the survey using standard processing software. Subsequently, a thorough archival search was completed to link historic and ethnographic information with the archaeological data obtained on the cemeteries. The final result of this research was a report that provides a detailed description of the results of the GPR survey of the cemeteries at Cape Canaveral Air Force Station.
74

Monitoring Long-term Controlled Grave Scenarios Using Ground Penetrating Radar

Hawkins, William T 01 January 2011 (has links)
Geophysical techniques, such as ground-penetrating radar (GPR), have been successfully used by law enforcement agencies to locate graves and forensic evidence. However, more controlled research is needed to better understand the potential and limitations of this technology in the forensic context. The goal of this study was to determine the potential of GPR using both a 250 MHz and 500 MHz antennae to monitor eight controlled graves with six different burial scenarios using pig carcasses as human proxy cadavers. In addition, a conductivity meter was employed to determine the applicability of using this technology to locate unmarked graves. For the conductivity meter, the data was processed using an EM38 program in conjunction with the SURFER program to display a conductivity contour map of the grid. For the GPR imagery, reflection profile data was processed using the program REFLEXW while horizontal slices were processed using the GPR-SLICE program. Results indicate that the conductivity meter is not a viable option in the detection of clandestine graves when other geophysical tools are available. For the GPR, results indicate that while graves can still be detected after a two-year period, there is a marked decrease in the response, or resolution, of the burial scenarios. Furthermore, burials with grave goods interred along with the carcasses were far more likely to be detected than burials that were interred with no accompanying grave goods. When comparing the performance of the two antennae, the 250 MHz antenna provided increased resolution for large cadavers buried in deep graves.
75

Automated Characterization of Bridge Deck Distress Using Pattern Recognition Analysis of Ground Penetrating Radar Data

Scott, Michael L. 24 August 1999 (has links)
Many problems are involved with inspecting and evaluating the condition of bridges in the United States. Concrete bridge deck inspection and evaluation presents one of the largest problems. The deterioration of these concrete decks progresses more rapidly than any other bridge component, which leads to early concrete deck replacements that must be done before the bridge superstructure needs to be replaced. The primary cause of deterioration in these concrete bridge decks is corrosion-induced concrete cracking, which frequently results in delaminations. Delamination distress increases the life cycle cost of maintaining a concrete bridge deck, particularly when it is not detected early on. Early detection of delamination distress can facilitate economical repair and rehabilitation work, but bridge engineers must recommend deck replacement if repairs are delayed too long or inspection tools cannot detect delaminations early enough. The Federal Highway Administration has responded to the need for a better bridge deck inspection tool by contracting Lawrence Livermore National Laboratory to develop two new prototype ground penetrating radar systems. These two systems generate three-dimensional data that provide a representation of features that lie below the bridge deck surface. Both of these systems produce large amounts of data for an individual bridge deck, which makes automated data processing very desirable. The primary goal of the automated processing is to characterize bridge deck distress represented in the data. This study presents data collected from sample bridge deck sections using one of the prototype systems. It also describes the development and implementation of appropriate methods for automating data processing. The automated data processing is accomplished using image processing and pattern recognition algorithms developed in the study. / Ph. D.
76

Development of Ground Penetrating Radar Signal Modeling and Implementation for Transportation Infrastructure

Loulizi, Amara 08 February 2001 (has links)
Ground penetrating radar (GPR) technology has been used for the past 20 years for a variety of applications to assess transportation infrastructure. However, the main issue after all these years remains: "How well does GPR work and under what conditions?" Results show that GPR works well for some situations, but is not an appropriate tool for other situations. It is not used currently on a routine basis by the US Departments of Transportation (DOTs) due mainly to difficulties encountered with data interpretation. Data interpretation difficulties are mainly attributed to the fact that images obtained from the reflected signals are not photographs of the features that are beneath the surface being investigated. The images show the amplitude of the radar-reflected signals from the interfaces with different dielectric properties. Therefore, a considerable amount of experience and operator skill may be required to correctly interpret sub-surface radar results. To better understand reflected GPR signals, this research was conducted with the following objectives: to determine the dielectric properties of concrete over the used GPR frequency range; to synthesize the reflected air-coupled radar signals and compare them with measured waveforms; to model and study the effects of simulated defects in concrete on the reflected air-coupled and ground-coupled radar signals; and to validate the research results in the field by predicting layer thicknesses of flexible pavements and detecting moisture in flexible pavement systems. Several concrete slabs, 1.5x1.5 m, were constructed with known thicknesses, simulated defects, and different reinforcement configurations. The concrete mixes included four different bridge deck mixes and one concrete pavement mix used in the State of Virginia. Results have shown that the dielectric constant of concrete is frequency and mix dependent. However, modeling the reflected signals using an average complex dielectric constant over the entire radar frequency range led to modeled waveforms comparable to the measured waveforms. Although air- and water-filled voids did distort the reflected waveforms, a model was developed to predict the reflected waveforms from the simulated defects. Reinforcement was found to affect the reflected waveforms only when it was oriented in a direction perpendicular to the GPR antennas. A model was also developed to predict the GPR waveforms obtained from flexible pavements. This model could be used in a procedure to measure layer thicknesses more accurately by including losses that occur inside the pavement materials. Two different case studies, where a ground-coupled GPR system was used to locate moisture at different layers, have led to the conclusion that the ground-coupled GPR is a feasible tool to detect moisture inside pavements. / Ph. D.
77

A Study of Ground Penetrating Radar Methods in an Underground Stone Mine to Improve Ground Control

Baggett, Jonathan Gabriel 09 July 2019 (has links)
This work focuses on the operational and safety issues associated with karst voids in large opening underground mines. Issues include water inrush, structural instability, and engineering uncertainty in these environments. Coupled with the fracturing prevalent in folded sedimentary rocks, karsts are complex and challenging ground control risks. Traditional methods of predicting karst void locations such as probe-drilling are impeded by the inconsistent spatial distribution and variable sizes of the features. Ground penetrating radar (GPR) is a geophysical technique that transmits radio waves into a medium and subsequently detects reflected waves via a receiver. The travel time and energy of received signals are then processed and interpreted. The difference in material properties between limestone and open karst voids causes strong reflections. This work summarizes a series of 2D and 3D GPR surveys for karst void mapping within a mine pillar and within sill pillars between mine levels in a large opening underground limestone mine. In this case study mine, karst voids are hazardous ground control risks that interact with geologic discontinuities, creating free blocks within the rock mass. As tunnels are advanced via blasting, unknown karst voids may be exposed and pose risks to mining personnel. The karst voids also form a hydrogeological network of water reservoirs with spatial locations throughout the rock mass that are difficult to predict with traditional methods such as drilling. While GPR has been utilized throughout several industries for anomaly detection, mapping, and validating other geophysical data sets, this technique has not seen the same proliferation within the mining industry. Regarding published literature, there is a lack of works that detail the applicability of GPR in underground mining scenarios. The aim of this work is to expand on previous methodologies establishing GPR as a useful tool in underground mining applications, and to discuss the benefits and limitations GPR data in such scenarios. / Master of Science / This work focuses on the operational and safety issues associated with karst voids in large opening underground mines. Typical issues include water flooding into the tunnels and rocks falling out from the roof and walls, among other things. Sedimentary rock structures sometimes are geologically complex, and karst voids only add to that complexity. Engineers usually predict karst void locations with drilling or statistics, but this is often challenging as karst voids have various shapes and orientations. Ground penetrating radar (GPR) is a geophysical technique that sends electric signals into the rock; these signals can reflect off of karst voids and other anomalies. The travel time and energy of signals that come back to the antennas are then processed and interpreted. The difference in material properties between limestone and open karst voids causes strong reflections. This work shows a series of 2D and 3D GPR surveys for karst void mapping within a pillar in a stone mine and also below the floor of mine tunnels. In this mine, karst voids are very dangerous and the miners spend significant time and resources to ensure the tunnels walls are stable. As tunnels are blasted, hidden karst voids may be exposed and pose unpredicted risks to miners. The karst voids are also connected by cracks and discontinuities, providing a path for water to travel along. While GPR has been used in various ways among the construction, civil engineering, and tunneling industries, there is not enough literature pertaining to its benefits for mines. The goal of this work is to grow the available literature on GPR in mining and to talk about the best practices for GPR use as a means of improving health and safety for miners underground.
78

High Resolution Imaging Ground Penetrating Radar Design and Simulation

Saunders, Charles Phillip II 06 May 2014 (has links)
This paper describes the design and simulation of a microwave band, high resolution imaging ground penetrating radar. A conceptual explanation is given on the mechanics of wave-based imaging, followed by the governing radar equations. The performance specifications for the imaging system are given as inputs to the radar equations, which output the full system specifications. Those specifications are entered into a MATLAB simulation, and the simulation results are discussed with respect to both the mechanics and the desired performance. Finally, this paper discusses limitations of the design, both with the simulations and anticipated issues if the device is fully realized. / Master of Science
79

Neotectonics and Paleoseismology of the North Frontal Thrust System, southern California

Anderson, Kevin Brent 30 August 2002 (has links)
Seismic hazard assessment of intersecting fault systems, such as the strike-slip and reverse faults of the Los Angeles basin, is hindered by complex patterns of rupture that are currently difficult to predict. To improve this understanding, constraints on the previous rupture patterns of such systems are needed. The junction between the Transverse Ranges and the Eastern California shear zone in southern California provides a natural analog to the seismic setting of the Los Angeles basin. Along the northern flank of the San Bernardino Mountains, the east-west trending North Frontal thrust system is intersected by several northwest trending dextral faults of known Holocene and historical rupture activity. This structural setting, along with an apparent decay in uplift rate along the thrust (from a 3-Myr average of 0.5 mm/yr to a late Pleistocene rate estimated as slow as 0.05 mm/yr), suggests the thrust system may have been rendered inactive by the shear zone that dissects it. However, a clear cross-cutting relationship does not exist, raising the possibility that the two systems are coactive. To test this, we have constrained the recent rupture history of one thrust fault segment with paleoseismic investigations. We have excavated an apparently young thrust fault scarp along the central portion of the thrust system, chosen as the most likely to have ruptured in the recent past. At this location, just west of the intersection of the Helendale fault, a 7-m-high thrust scarp in older fanglomerate is dissected and replaced by younger alluvium with a 1.5-m-high scarp. An excavation across the smaller scarp revealed a 3-m-thick sequence of coarse alluvium cut by a shallow, south-dipping thrust fault with 1.65 m of throw. The simple, smooth trace of the fault plane and the lack of evidence for repeated deformation suggest the offset was produced by one event. A maximum age for this event is provided by disagregated detrital charcoal sampled from a sand lens in the lowermost gravel of the hangingwall, which yielded a calibrated radiocarbon age of 9220 BC (11220 yr BP). Subsequent to this inferred depositional age, an additional 2-m of gravel was deposited prior to fault rupture. Although a minimum age is not constrained, the event may thus have been as young as mid- to late-Holocene, consistent with the poor degree of soil development in several buried soil horizons in the alluvium. This indicates that at least part of the thrust system is coactive with the strike-slip strands that intersect it and implies that such intersections do not require either fault system to be extinct. However, it is crucial to obtain a minimum age in order to constrain the recent rupture history. This is inherently difficult because where the required onlapping relationships are present, scarps associated with the most recent event have been buried or eroded. A second site does occur several km from our original site, yet without knowing the exact location or depth of the fault an excavation would be risky. To increase the likelihood of finding the fault with an excavation, we employed geophysical exploration techniques to image the fault at depth. Ground Penetrating Radar (GPR) is a technique that can be used for shallow high-resolution imaging by recording the propagation of radio waves. To calibrate this technique to locating a shallow fault in the conditions of the study area, we returned to the site of our original excavation. We observed reflections from subhorizontal strata and the fault plane extending to a depth ~10 meters. This was identical to our initial trench observations. Using the same technique at our candidate minimum-age site, we resolved the exact location of a dipping fault plane covered by several meters of young alluvium. Now that the fault has been located, excavation of the site can be undertaken with a good chance of success. This result shows the value of GPR being used as an innovative predictive tool in paleoseismology. / Master of Science
80

Application of Electromagnetic Methods to Identify and Characterize Sub-surface Structures Associated with the Coles Hill Uranium Deposit

Whitney, Joshua Andrew 02 June 2009 (has links)
The Coles Hill uranium deposit in Pittsylvania County, Virginia represents the largest unmined uranium resource in the United States, with an estimated resource of 110 million pounds of U3O8 in place with a cutoff grade of 0.025 wt% U3O8. The deposit is localized along a geologic unit that parallels the Chatham Fault, which separates the Triassic Danville Basin to the east from the older crystalline rocks to the west. The location of the Chatham Fault is important to understanding distribution of ore and for developing an effective mine plan. In this study the Chatham Fault location has been inferred from ground conductivity and ground penetrating radar (GPR) surveys. Anomalies in the data are consistent with previously mapped fault locations based on drillhole and geophysical data, such as gravity and magnetic surveys, collected in the 1980s. These results confirm that the strike of the Chatham Fault is approximately N40ºE and dips to the southeast with dip values ranging from 70º, in the northeast, to 50º, in the southwest. / Master of Science

Page generated in 0.067 seconds