• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réactions multi composants et essais d’accès à de nouveaux pentazoles / Multicomponent reactions and access tries to new pentazoles

Narboni, Claude 14 June 2017 (has links)
Ces travaux proposent d'explorer lachimie de l'azote, de la synthèse de moléculespauvres en azote à visée biologique à lasynthèse de molécules très riches en azote papplication en propulsion.La première partie porte sur la synthèse demolécules contenant peu d'azote. Le but est decompléter les bibliothèques de réactionsdisponibles pour la synthèse de moléculesnaturelle ou à forte activité biologique. Pour cefaire, les réactions multicomposants mettant enjeu des isonitriles sont des outils de choix : ellespermettent d'obtenir des structures complexesen très peu d'étapes. Nous avons testé diversnucléophiles dans une séquence réactionnellePasserini / Tsuji-Trost suivie de différentespost-condensations. Nous avons ainsi pu obtenirdes molécules aussi variées que des lactames,des diènes, des cyclopentanes, descyclopentènes ou encore des pyrroles.La seconde partie se concentre sur de nouvellesmolécules énergétiques très riches en azoNous nous sommes intéressés au pentazoles,avenir des HEDM. La modélisation desmolécules cibles nous a permis de sélectionnerales plus prometteuses et de tester leur faisabilitéen synthèse. / This work proposes to explore thechemistry of nitrogen, from the synthesis oflow-in-nitrogen molecules with potentialbiological activity to the synthesis of veryhigh-in-nitrogen molecules for application inpropulsion.The first part deals with the synthesis ofmolecules containing little nitrogen. The aim isto supplement the library of reactions availablefor the synthesis of natural molecules ormolecules with biological activity. To achievethis, multicomponent reactions involvingisonitriles are tools of choice: they enablesynthesis of complex structures in very fewsteps. We tested various nucleophiles in aPasserini / Tsuji-Trost reaction sequencefollowed by different post-condensations. Wehave thus been able to obtain molecules asvaried as lactams, dienes, cyclopentanes,cyclopentenes or even pyrroles.The second part focuses on new energymolecules rich in nitrogen. We were interestedin pentazoles, the future of HEDM. Themodeling of the target molecules allowed us toselect the most promising ones, to then testtheir feasibility in synthesis.
2

Computational Discovery of Energetic Polynitrogen Compounds at High Pressure

Steele, Brad A. 02 April 2018 (has links)
High-nitrogen-content energetic compounds containing multiple N-N bonds are an attractive alternative towards developing new generation of environmentally friendly, and more powerful energetic materials. High-N content translates into much higher heat of formation resulting in much larger energy output, detonation pressure and velocity upon conversion to large amounts of non-toxic, strongly bonded N2 gas. This thesis describes recent advances in the computational discovery of group-I alkali and hydrogen polynitrogen materials at high pressures using powerful first-principles evolutionary crystal structure prediction methods. This is highlighted by the discovery of a new family of materials that consist of long-sought after all-nitrogen N􀀀 5 anions and metal or hydrogen cations. The work has inspired a resurgence in the efforts to synthesize the N􀀀 5 anion. After describing the methodology of first-principles crystal structure prediction, several new high-nitrogen-content energetic compounds are described. In addition to providing information on structure and chemical composition, theory/simulations also suggests specific precursors, and experimental conditions that are required for experimental synthesis of high-N pentazolate EMs. To aid in experimental detection of newly synthesized compounds, XRD patterns and corresponding Raman spectra are calculated for several candidate structures. The ultimate success was achieved in joint theoretical and experimental discovery of cesium pentazolate, which was synthesized by compressing and heating cesium azide CsN3 and N2 precursors in a diamond anvil cell. This success highlights the key role of first-principles structure prediction simulations in guiding experimental exploration of new high-N energetic materials.
3

Synthese und Reaktionen von heteroatomgebundenen Aziden

Pester, Tom 24 September 2021 (has links)
Hinweis: Zur optimalen Darstellung des Dokumentes bitte die Schriftart „ArnoPro“ installieren. Die vorliegende Arbeit beschäftigt sich mit der Synthese und den Reaktionen von heteroatomgebundenen Aziden. Im Speziellem werden vier verschiedene Gruppen untersucht, diese umfassen: Die Synthese von N-Azido-Aminen u. a. mittels nucleophiler Substitution und Diazotransfer-Reaktion, die Synthese von N-Azido-Iminen mittels nucleophiler Substitution und Addition-Reaktion von Azid an Iminium-aktivierte Azide, die Synthese von N4O/N4O2 durch Addition von Azid-Ion an Nitrosyl/Nitronium-Salze und die Synthese von Iod(III)aziden als Iod(III)mono-, -di- und triazid(e) mittels nucleophiler Substitution. Ein besonderes Augenmerk liegt in der Untersuchung der neu etablierten Reaktion zur Synthese von N-Amidino-Pentazolen und N-Azido-Amidinen ausgehend von Chlor-Iminium-Salzen. Es konnte hierbei gezeigt werden, dass nach einer ersten Substitutionsreaktion die neu eingeführte Azid-Gruppe durch die Nachbarschaft zur Iminium-Struktur aktiviert wird und so ein weiteres Azid-Ion an der Azid-Gruppe angreifen kann. Die sich im Folgenden bildenden N-Amidino-Pentazole und N-Azido-Amidine lassen sich mit Hilfe von 15N-Isotopenmarkierungen eindeutig, ohne unterstützende quantenchemische Rechnungen, bei tiefer Temperatur NMR-spektroskopisch nachweisen und belegen. Der Zerfall dieser Verbindungen bei Raumtemperatur liefert neben drei Äquivalenten Distickstoff ein nucleophiles Carben, welches diversen Folgereaktionen unterliegt und u. a. zu Azidomethylenaminen und Triazenium-Derivaten führt.:I. Inhaltsverzeichnis vi II. Abkürzungsverzeichnis ix 1. Einleitung 1 1.1. Azide - explosiv und vielfältig 1 1.1.1. Allgemeines 1 1.1.2. Heteroatomgebundene Azide in der Literatur 4 1.1.2.1. Überblick und bekannte Reagenzien 4 1.1.2.2. N-Azido-Amine 41 7 1.1.2.3. N-Azido-Imine 67 12 1.2. Stickstoff-haltige Heterocyclen 13 1.3. Zielsetzung 17 2. Ergebnisse und Diskussion 19 2.1. Synthese von N-Azido-Aminen 41 19 2.1.1. Synthese mittels nucleophiler Substitution 20 2.1.1.1. Reaktion von 43a mit NaN3: Die Reaktionsprodukte A und B 20 2.1.1.2. Reaktion von 43a mit NaN3: Aufklärung des Reaktionsmechanismus 22 2.1.1.3. Reaktion von 43a mit NaN3: Variation der Reaktionsbedingungen 26 2.1.1.4. Reaktion von 43a mit NaN3: Variation des Azid-Reagenzes 27 2.1.1.5. Variationen der Abgangsgruppe 29 2.1.2. Synthese mittels Diazotransfer 36 2.1.3. Synthese mittels Azid-Gruppen-Übertragung 43 2.1.4. Synthese über Tetrazenium-Salze 45 2.1.5. Synthese über N-Diazonium-Salze 47 2.2. Synthese von N-Azido-Iminen 67 52 2.2.1. Synthese mittels nucleophiler Substitution 53 2.2.2. Synthese mittels Additionsreaktion 55 2.2.2.1. Vorversuche 56 2.2.2.2. Reaktionssystem nach BALLI et al. 59 2.2.2.3. Weitere Formamid-Derivate 79 2.2.2.4. Weitere Systeme 90 2.3. Synthese von N4O (213) und N4O2 (216) 100 2.4. Synthese von Iod(III)aziden 108 2.4.1. Synthese von Iod(III)monoaziden 108 2.4.2. Synthese von Iod(III)diaziden 110 2.4.3. Synthese von Iod(III)triazid (242) 115 3. Zusammenfassung und Ausblick 120 4. Experimenteller Teil 124 4.1. Arbeitsweisen 124 4.1.1. Sicherheitshinweise zum Umgang mit Aziden 124 4.1.2. Arbeiten unter Inertgas 124 4.1.3. Arbeiten bei tiefer Temperatur 125 4.1.4. Verwendung/Trocknung von Lösungsmitteln 125 4.1.5. NMR-Spektroskopie 125 4.1.6. FT-IR-Spektroskopie 126 4.1.7. in-situ-IR-Spektroskopie 126 4.1.8. HRMS 127 4.1.9. Elementaranalyse 127 4.1.10. Schmelzpunkt 127 4.1.11. Synthese von Methylmethylenimin (117) 127 4.1.12. Synthese von N4O (213) und N4O2 (216) 129 4.2. Synthese der Edukte/Reagenzien 130 4.3. Genutzte, kommerziell verfügbare Chemikalien 131 4.4. Synthesevorschriften 135 4.4.1. Synthese von 1,3,5-Trimethyl-2,3,4,5-tetrahydro-1,3,5-triazinium- chlorid (116a) 135 4.4.2. Synthese von Methylmethylenimin (117) 136 4.4.3. Synthese von N-Brom-N,N-dimethylamin (121a) 137 4.4.4. Synthese von N,N-Dichlormethylamin (125a) 138 4.4.5. Synthese von Benzoesäuremethylester (131) 139 4.4.6. Synthese von N-Chlor-N-methyl-N-prenylamin (43q) 140 4.4.7. Synthese von 1,1-Dibenzyl-2-tosylhydrazin (137) 141 4.4.8. Synthese von N-Methyl-N-(3-methylbut-2-en-1-yl)hydrazin (54q) 142 4.4.9. Synthese von (E)-1-Methyl-2-(1,1-dimethylprop-2-en-1-yl)diazen (132r) 143 4.4.10. Synthese von 1-((2,4,6-Triisopropylphenyl)sulfonyl)-4,5,6,7,8,9-hexahydro-1H-cycloocta[d]-1,2,3-triazol (141) und 2-((2,4,6-Triisopropylphenyl)sulfonyl)-4,5,6,7,8,9-hexahydro-2H-cycloocta[d]-1,2,3-triazol (142) 144 4.4.11. Synthese von 1,1,1,4,4-Pentamethyltetrazenium-triflat (145a) 146 4.4.12. Synthese von 1-Methyl-4,5,6,7,8,9-hexahydro-1H-cycloocta[d]-1,2,3- triazol (152) 147 4.4.13. Synthese von N-Thiocyanato-cyclohexylimin (181u) 148 4.4.14. Synthese von 5-Chloro-1-methyl-3,4-dihydro-2H-pyrrol-1-ium chlorid (185n) 149 4.4.15. Synthese von N-Cyano-N,N-dimethylamin (122) 150 4.4.16. Synthese von N-Azidomethyl-N,N-dimethylamin (48) 151 4.4.17. Synthese von N-Azido-3-ethylbenzothiazol-2-imin (71a) 152 4.4.18. Synthese von 3-Ethyl-N-(4,5,6,7,8,9-hexahydro-1H-cycloocta[d]-1,2,3-triazol-1-yl) benzothiazol-2-imin (196a) 154 4.4.19. Synthese von N'-Azido-N,N-dimethylformamidin (15N4-67a) und N,N-Dimethyl-N'-pentazolyl)formamidin (15N6-199a) 157 4.4.20. Synthese von N-(Azidomethylen)-N-methylmethanaminium- salzen (15N3-186a) 160 4.4.21. Allgemeine Synthesevorschrift zu den N-Azido-formamidinen (15N3-67), Azido-Iminium-Salzen (15N2-186), Diaziden (15N2-187) und N-Amidino-Pentazolen (15N4-199) 161 4.4.22. Synthese von 1-Ethyl-2-(4,5,6,7,8,9-hexahydro-2H-cycloocta[d]-1,2,3-triazol-2-yl)pyridin-1-iumsalzen (210q) 168 4.4.23. Synthese von 2-((1,3-Dimethylimidazolidin-2-yliden)triaz-1-en-1-yl)-1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium-hexafluorophosphat (208s) 170 4.4.24. Synthese von Ethyl-2-(azido(phenyl)iodanyl)-2-diazoacetat (227a) 171 4.4.25. Synthese von 2-Ethoxy-2-oxo-acetonitril (232a) 172 4.4.26. Synthese von Phenyl((trimethylsilyl)oxy)iodanyl-triflat (239a) 173 5. Literaturverzeichnis 174 6. Danksagung 186 7. Anhang 188 7.1. Teil I 189 7.2. Teil II 199 8. Selbstständigkeitserklärung 294 9. Lebenslauf 295

Page generated in 0.045 seconds