Spelling suggestions: "subject:"peppers diseases anda tests"" "subject:"peppers diseases anda pesar""
1 |
Hypersensitive cell collapse induced in bell pepper (Capsicum annuum) by Pseudomonas phaseolicola and by an endotoxin isolated from the bacteriaCrosthwaite, Leola M January 1975 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1975. / Bibliography: leaves [130]-141. / xi, 141 leaves ill. (some col.)
|
2 |
Tabasco wilt: nature of host-virus interactionZouba, Ali, 1949- January 1977 (has links)
No description available.
|
3 |
Cucumber mosaic virus transmission and resistance in Capsicum annuum L /Cuevas, John R. 01 January 1985 (has links) (PDF)
No description available.
|
4 |
Mechanisms of biological control of the damping-off fungus, Pythium ultimum, by binucleate RhizoctoniaSiwek, K. January 1996 (has links) (PDF)
Bibliography: leaves 162-198. This thesis investigates the mechanism(s) involved in the protection of Capsicum seedlings by two isolates of BNR against the damping-off fungus, P.u. sporangiiferum. Emphasis is placed on ecological attributes of the antagonists in relation to the pathogen, in conditions resembling those of the nursery environment for which biological control is intended. It is proposed that competition for resources, such as the host tissues with exudate-rich infection sites and the organic residue in the potting mix, is the principal factor influencing the interactions between P.u. sporangiiferum and BNR. It is also suggested that BNR isolates employ at least three strategies to exert competitive advantage over P.U. sporangiiferum. It is postulated that the ability of BNR to capture and utilise resources, in the presence of a potential competitor, is the principal attribute of these biocontrol agents that brings about a sucessful control of P.u. sporangiiferum in nursery potting mix.
|
5 |
Studies on a strain of cucumber mosaic virus infecting sweet peppers in Quebec.Khadhair, A. H. (A. Hameed) January 1979 (has links)
No description available.
|
6 |
Mechanisms of biological control of the damping-off fungus, Pythium ultimum, by binucleate Rhizoctonia / by K. Siwek.Siwek, K. January 1996 (has links)
Bibliography: leaves 162-198. / x, 198 leaves, [12] leaves of plates : ill. [some col.] ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This thesis investigates the mechanism(s) involved in the protection of Capsicum seedlings by two isolates of BNR against the damping-off fungus, P.u. sporangiiferum. Emphasis is placed on ecological attributes of the antagonists in relation to the pathogen, in conditions resembling those of the nursery environment for which biological control is intended. It is proposed that competition for resources, such as the host tissues with exudate-rich infection sites and the organic residue in the potting mix, is the principal factor influencing the interactions between P.u. sporangiiferum and BNR. It is also suggested that BNR isolates employ at least three strategies to exert competitive advantage over P.U. sporangiiferum. It is postulated that the ability of BNR to capture and utilise resources, in the presence of a potential competitor, is the principal attribute of these biocontrol agents that brings about a sucessful control of P.u. sporangiiferum in nursery potting mix. / Thesis (Ph.D.)--University of Adelaide, Dept. of Crop Protection, 1997
|
7 |
Studies on a strain of cucumber mosaic virus infecting sweet peppers in Quebec.Khadhair, A. H. (A. Hameed) January 1979 (has links)
No description available.
|
8 |
Development of a pepper (Capsicum annuum L.) hybrid variety with resistance to potato virus Y (PVY) using molecular breeding.Moodley, Vaneson. 03 June 2014 (has links)
Pepper (Capsicum annuum L.) is an important vegetable crop grown and consumed worldwide. Potato virus Y (PVY) is a globally economically important pathogen which significantly reduces the yield and quality of cultivated pepper. The virus is considered as a major limiting factor to the economic production of pepper in the province of KwaZulu-Natal (KZN) in the Republic of South Africa (RSA). Many applied practices to control the spread of PVY are ineffective to mitigate the losses incurred by many farming communities across the KZN province. Therefore, the objectives of this study was to determine the full genome sequence of a PVY isolate from KZN, to identify resistance alleles in commercially available pepper varieties in KZN and to develop a pepper hybrid variety with resistance to PVY using a molecular breeding strategy
The first part of the study was conducted to determine the first full genome sequence of a PVY isolate (JVW-186) infecting pepper from KZN. The complete genome sequence of JVW-186 was assembled from overlapping RT-PCR clones using MEGA 5 software. Individual ORFs were identified using the nucleotide data base NCBI and aligned using CLUSTALW. RDP4 software was used to identify recombination junctions in the sequence alignment of JVW-186. CLC Main Workbench 6 software was used to determine the nucleotide sequence similarity of recombinant and non-recombinant fragments of JVW-186 in conjunction with ten PVY parental isolates. Based on sequence data, virus morphology and the coat protein size as determined by SDS-PAGE analysis, the identity of the isolate JVW-186 was confirmed as PVY. Phylogenetic trees were constructed from all recombinant and non-recombinant segments of the sequence by the maximum likelihood method using MEGA 5 software. The full length sequence of JVW-186 consisted of 9700bp. Two ORF’s were identified at position 186 and 2915 of the sequence alignment encoding the viral polyprotein and the frameshift translated protein P3N-PIPO, respectively. RDP4 software confirmed two recombination breakpoints at position 343 and 9308 of the sequence resulting in four segments of the genome. At each recombination event, a 1021-bp fragment at the 5’
end in the region of the P1/HC-Pro protein and a 392-bp fragment in the region of the coat protein shared a high sequence similarity of 91.8 % and 98.89 % to the potato borne PVYC parental isolate PRI-509 and the PVYO parental isolate SASA-110 respectively. The non-recombinant fragment 1 clustered within the C clade of PVY isolates; however the large 7942-bp fragment 3 did not cluster within any of the clades although it shared > 80% nucleotide sequence similarity to other PVY isolates used in this study. Our results suggest that isolate JVW-186 is a novel recombinant strain of PVY that could have evolved due to the dynamics of selection.
The second part of the study aimed to evaluate different pepper lines for resistance to PVY. Two recessive alleles (pvr21 and pvr22) located on the pvr2-elF4E locus are known to confer resistance to the virus. To this end, six pepper lines were challenged with PVY infected Nicotiana tabacum cv. Xanthi leaf material using mechanical inoculation under greenhouse conditions. Each line was assessed for resistance to PVY by visual screening for disease severity and quantitative enzyme linked immunosorbent assay (ELISA) for virus load. Pepper lines were further characterized using tetra-primer ARMS-PCR (amplification refractory mutation system polymerase chain reaction) to identify and differentiate the presence of homozygous/heterozygous resistance alleles that confer PVY resistance. Evaluations revealed two resistant pepper lines (Double Up and Cecelia) and varying levels of susceptibility in the other four pepper lines challenged with PVY. The most susceptible pepper line was Benno, although high levels of susceptibility were observed in three other lines (IP, Mantenga and Excellence). The pvr2+ allele was positively identified in all the susceptible pepper lines using the T200A tetra-primer which confirms that the presence of this allele is dominant for PVY susceptibility. Double Up and Cecelia were genotyped homozygous pvr21/pvr21 and pvr22/pvr22 respectively, and remained asymptomatic throughout the trial which indicates that these alleles confer resistance to the isolate of PVY used in this study. The information generated in this study can be incorporated into breeding programs intended to control PVY on pepper in KZN.
The final part of the study focused on the development of resistant varieties as the best alternative to manage PVY diseases on pepper. Homozygous F2 pepper lines were
developed from local germplasm carrying PVY resistance genes (pvr21 and pvr22) using marker assisted selection (MAS). The F1 progeny was obtained by crossing a homozygous pvr21 (resistant) ‘Double Up’ cultivar with a heterozygous susceptible (pvr2+/pvr22) ‘Benno’ cultivar. F1 and F2 generations were assessed for the presence of PVY resistance/susceptibility alleles (pvr2+/pvr21/pvr22) at the pvr2-elF4e locus using the tetra primer amplification refractory mutation system – polymerase chain reaction (ARMS-PCR) procedure. Negative selection was carried out using the tetra-primer T200A marker to detect the pvr2+ (susceptible) allele. All F1 progeny displaying the pvr2+ allele were eliminated from further study. All 302 plants belonging to 29 F2 families expressing homozygous recessive traits were tested via mechanical inoculation for their response to PVY infection and resistance to PVY was confirmed in all selected families based on symptomatology in greenhouse house screens using double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA). These results show that ARMS-PCR can be used to successfully screen pepper genotypes for alleles that confer PVY resistance thereby contributing to the improvement of pepper production using molecular breeding approaches. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
9 |
Composition and phenology of insect pests of Capsicum (Solanaceae) cultivated in the Makana District, Eastern Cape Province, South AfricaHepburn, Colleen January 2008 (has links)
Capsicum baccatum var. pendulum was first grown in the Makana District in 2005. Extremely little was known about best practices for cultivation or the insects and diseases associated with the crop in this area. The study was conducted during the second year of production, November 2005 and November 2006, in an attempt to identify the composition and phenology of insects occurring on C. baccatum. In the more rural parts of the Eastern Cape, and more particularly in Grahamstown, there are very few industries. With the advent of this new agricultural venture, a processing factory has been opened in Grahamstown creating more than 600 seasonal jobs in the factory and 1000 seasonal jobs on farms for local people. This business enterprise has not only brought about the creation of jobs, but also training and skills development and empowerment, generating much-needed income in this area. An extensive literature review yielded limited information on insect pests associated with Capsicum. Data from a pilot sampling trial undertaken were statistically analyzed to establish the number of plants to be scouted per site and the most effective scouting techniques to use. Based on the data available and insects collected during the pilot sampling trial, a surveillance programme was designed. Five different types of monitoring traps were placed in each of the eight study sites. Collection of trap catches and scouting of fifteen individual plants per site was undertaken on a weekly basis over the 52-week study period. The most commonly occurring potential insect pests were African Bollworm Helicoverpa armigera (Hübner), False Codling Moth Thaumatotibia leucotreta (= Cryptophlebia leucotreta) (Meyrick), Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) and several species of thrips. Population densities of these pests and their phenology on Capsicum were determined. Statistical analyses established the efficacy of the monitoring traps for each pest, tested for differences among and between study sites, calculated an estimate of the number of pods damaged and a measure of plant damage.The results show that the majority of damage caused to the Capsicum baccatum cropping system was due to Mediterranean Fruit Fly populations. It was established that, although African Bollworm and False Codling Moth were present during the study period, their numbers were negligible and only nominal damage was caused by these pests. Damage caused by thrips species was apparent but not quantifiable. Intervention strategies using an Integrated Pest Management approach, are discussed.
|
Page generated in 0.1162 seconds