• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational studies of anti-cancer Aurein peptides

Manhas, Neha 14 January 2015 (has links)
Submitted in fulfillment of the requirements of the Degree of Master of Technology: Chemistry, Durban University of Technology. 2014. / Peptide folding is a very complicated and dynamic process taking place in all living systems. The understanding of a bioactive conformation of the peptides is very important to understand their biological functions and underlying mechanism of action. However, the high flexible nature of peptides makes this process difficult as they can adopt thousands of conformations within the fraction of a second. The usage of experimental techniques in the characterization process is also limited due to several associated complications including synthesis, isolation and crystallization of peptides. The present computational methodologies, on the other hand, are solid enough to provide detailed complementary information about the intrinsic conformational features of peptides by mimicking their physiological conditions. In the present work, molecular dynamics (MD) computational method was used to explore the configurational space of three Aurein peptides, namely Aurein 2.3, Aurein 2.4 and Aurein 2.5. These peptides are secreted by the amphibian skin when they are exposed to external stimuli. These peptides have been reported to possess anti-cancer and anti-bacterial activity with minimum resistance compared to the available drugs. However, despite their medicinal significance, the precise three dimensional structures of Aurein 2.4 and Aurein 2.5 are not as yet known. First, a validation study was performed on Aurein 2.3 to check the efficiency of the computational protocol. The results obtained revealed the presence of -helicity in all residues of the Aurein 2.3, in accordance with its experimental structure. A similar protocol was further used to explore the conformational profiles of the remaining two peptides (Aurein 2.4 and Aurein 2.5) under implicit and explicit solvent conditions. The results obtained revealed that both these peptides exhibit -helical character in all residues although in varying percentages. The -helical region in the case of Aurein 2.4 was localized predominantly in the central residues extending towards its N-terminal residues, whereas it was flanked by N-terminal and the central residues in Aurein 2.5. However, -helicity was completely absent in the explicit solvents, and the peptides preferred to stay either in -turns or extended forms. Hence, the present work provides comprehensive information about the conformational preferences of Aurein peptides which could lead to a better understanding of their native conformations for future investigations and point the way towards developing their new agonists.
2

Computational studies of the folding patterns of small and medium-size polypeptides

Mokoena, Paul January 2010 (has links)
Submitted in partial fulfilment for the Degree of Doctor of Technology: Biotechnology, Durban University of Technology, 2010. / This study involved a series of molecular dynamics (MD) simulations applied to case studies of small and medium-size polypeptides to assess the thermodynamics of their folding characteristics. Peptide folding is a complex and vital phenomenon taking place in all living systems. Bioactive conformational structures of folded peptides need to be well characterized before using them in computer-aided drug design. The computational procedure was validated on the 10-residue long chignolin-like synthetic mini-protein (CLN025). For this peptide, replica exchange molecular dynamics (REMD) calculations were carried out in explicit and implicit solvents using the generalized Born (GB)/surface area (SA) approximation with different sets of force field parameters. Following this validation procedure, case studies of the folding conformations of peptides of different lengths including the 5-residue met-enkephalin, the 27-residue pituitary adenylate-activating polypeptide 27(PACAP27) and the 28-residue vasoactive intestinal peptide (VIP) were undertaken. The latter two peptides are multifunctional hormones that mediate diverse biological functions, such as the cell cycle, cardiac muscle relaxation, immune response, septic shock, bone metabolism, and endocrine function. Results obtained indicate that when explicit water, methanol and DMSO solvents were used, it appeared that methanol (MeOH) and dimethylsulphoxide (DMSO) afforded met-enkephalin the ability to form more intra-hydrogen bonds than water, producing type I and type III β-turn structures; thus enhancing the helical conformation of the peptide. MD trajectories of longer polypeptides (VIP and PACAP27) were also populated with type I and type III β-turns, which occurred consecutively; with α- and 310-helices occurring from the middle of each peptide towards the C-terminal. Characterization of implicit solvent results, reveal that these simulations have been able to reproduce the same type of conformers obtained by experimental NMR studies published in literature, which structurally resemble the native conformation of the bioactive peptides. These conformational structures will be applied as lead agents in computer-aided drug design. One of the major achievements of this study is the ability to optimize and validate the force field parameter sets to describe the thermodynamic properties of peptide systems in an unbiased manner, a non-trivial task for even the smallest of peptides. These findings re-affirm the notion that computational methods have matured enough to model dynamic biological phenomena such as peptide folding, a feat previously thought to be impossible.

Page generated in 0.1456 seconds