Spelling suggestions: "subject:"peptidomimetics"" "subject:"peptidomimeticss""
51 |
Design, Syntheses, and Bioactivities of Conformationally Locked Pin1 Ground State InhibitorsWang, Xiaodong 12 April 2005 (has links)
Pin1 (protein interacting with NIMA 1) is a peptidyl-prolyl isomerase involved in mitosis. As a potential anti-cancer drug target, Pin1 interacts and regulates the activity of an increasing number of cell cycle enzymes by an unknown mechanism. These cell cycle enzymes include Cdc25, Cdc27, Cyclin D1, Myt1, Wee1, NIMA, Cdc2, Plk1 and c-Myc. Recent research has revealed that Pin1 is overexpressed in a variety of cancer cell lines and Pin1 inhibitors inhibit proliferation activity of several cancer cells overexpressing Pin1. The most potent Pin1 inhibitors identified so far are in the micromolar range and no pharmacophore has been identified.
In order to assist the understanding of the biological function of Pin1 using molecular probes, two amide isosteres of Ser-<i>trans</i>-Pro and Ser-<i>cis</i>-Pro dipeptides were designed and stereoselectively synthesized. The conformationally locked Ser–<i>trans</i>–Pro mimic, Boc-SerΨ[(<i>E</i>)CH=C]Pro–OH, was synthesized through the use of an Ireland-Claisen [3,3]-sigmatropic rearrangement in nine steps with 13% overall yield from a serine derivative. The Ser-<i>cis</i>-Pro mimic, Boc-SerΨ[(<i>Z</i>)CH=C]Pro–OH, was synthesized through the use of a Still-Wittig [2,3]-sigmatropic rearrangement in 11 steps with an overall yield of 20% from the same starting material.
Conformationally locked peptidomimetics, including two exactly matched peptidomimetics, Ac–Phe–Phe–pSer–Ψ(<i>E</i>)CH=C]Pro–Arg–NH2 and Ac–Phe–Phe–pSer–Ψ[(<i>Z</i>)CH=C]Pro–Arg–NH2, were synthesized from these Ser-Pro isosteres using Fmoc SPPS. A protocol for in vitro Pin1 inhibition assay was established for measuring the inhibition constant for these peptidomimetics. A conformationally locked cis peptidomimetic inhibits Pin1 with a <i>K</i><sub>i</sub> of 1.7 <i>μ</i>M, 23-fold more potent than its trans counterpart, illustrating the preference of Pin1 for a cis amide bond in its PPIase domain. The A2780 ovarian cancer cell antiproliferation activity of these peptidomimetics parallels their respective Pin1 inhibition data. This research provides a start toward more drug-like Pin1 inhibitor design. Gly–<i>trans</i>–Pro isosteres were synthesized using the Ireland-Claisen route. The construction of a non-peptidic (Z)-alkene library for Pin1 inhibition was attempted using the Ser-<i>cis</i>-Pro mimic, Boc—SerΨ[(Z)CH=C]Pro–OH as the core. / Ph. D.
|
52 |
Designing Direct and Indirect Factor Xa InhibitorsAl-Horani, Rami 01 January 2012 (has links)
Anticoagulants are the basis for treatment and prevention of thrombotic diseases. The currently available medicines are associated with a wide range of adverse reactions that mandates developing new anticoagulants. Several lines of evidence support the superiority of factor Xa (FXa) as a promising target to develop novel anticoagulants. This work focuses on the design of direct and indirect FXa inhibitors using an interdisciplinary approach. As indirect FXa inhibitors, a focused library of tetrasulfated N–arylacyl tetrahydroisoquinoline (THIQ) nonsaccharide allosteric antithrombin activators was designed, synthesized, and biochemically evaluated to establish their structure–activity relationship (SAR). An N–arylacyl THIQ analog having carboxylate at position–3, two sulfate groups at positions–5 and –8 of THIQ moiety, butanoyl linker, and two sulfate groups at positions–2 and –5 of the phenolic monocyclic moiety was identified as the most promising nonsaccharide antithrombin activator with KD of 1322 ± 237 μM and acceleration potential of 80–fold. Its biochemical profile indicates a strong possibility that it activates antithrombin by the pre–equilibrium pathway rather than the induced–fit mechanism utilized by heparin analogs. A similar interdisciplinary approach was exploited to design direct FXa inhibitors that possess high selectivity and are potentially orally bioavailable. Structurally, the designed direct FXa inhibitors are neutral THIQ dicarboxamides. THIQ dicarboxamide is a privileged structure with a semi–rigid character, a structural feature that potentially offers high selectivity for targeting FXa over other coagulation and digestive proteases. It can also be thought of as an amino acid–like structure, which affords accessibility to a large number of compounds using well established peptide chemistry. Mechanistically, the designed inhibitors were expected to bind to FXa in the active site and function as orthosteric inhibitors. These direct FXa active site inhibitors are also likely to inhibit clot–bound enzyme. Nearly 60 THIQ dicarboxamides were synthesized and biochemically evaluated. Through detailed SAR analysis, the most potent analog was designed and found to exhibit an IC50 of 270 nM (Ki = 135 nM), an improvement of more than 207–fold over the first inhibitor synthesized in the study. The most potent inhibitor displayed at least 1887–fold selectivity for FXa over other coagulation enzymes and a selectivity index of at least 279–fold over the digestive serine proteases. This analog doubled plasma clotting times at 17–20 μM, which are comparable to those of agents being currently studied in clinical trials. Overall, allosteric and orthosteric approaches led to the design of indirect and direct small molecule inhibitors of FXa based on the THIQ scaffold. This work introduces two promising molecules, a tetrasulfated N–arylacyl THIQ analog as a heparin mimetic and a neutral THIQ dicarboxamide as a potent, selective, and potentially bioavailable peptidomimetic, for further advanced medicinal chemistry studies.
|
53 |
Conformational control by intramolecular hydrogen bondingLuccarelli, James Walter January 2013 (has links)
Hydrogen bonds are directional, non-covalent interactions between hydrogen and electronegative atoms. Although generally weak, these interactions are critical to the stability of many biological systems including proteins and DNA. This dissertation explores small molecules in which an intramolecular hydrogen bond is the key determinant of conformation. Chapter 1 introduces the protein Grb2 SH3C, details its role in cancer signalling, and delineates the idea of peptidomimetics—small molecules which are functionalized to mimic the structure of a peptide and disrupt protein-protein interactions. Chapter 2 describes a virtual screen for binders to Grb2 SH3C. From a library of 6.3 million compounds, 34 were tested in vitro and two found to bind to the protein in two orthogonal assays. Chapter 3 describes mimics of the polyproline II helix using a benzoylurea scaffold. A small library of these compounds was synthesized and tested for binding to Grb2 SH3C using SPR, a competition assay, and NMR. Chapter 4 describes attempts to mimic a 310 helix using benzamide-based peptidomimetics. The synthesis and in vitro evaluation of these molecules as ligands of Grb2 SH3C is described. Chapter 5 uses quantum chemical calculations to assess the energies of a series of molecular switches. These calculations benchmark a range of modern density functional theory calculations, and attempt to quantify the accuracy of these methods for a large, flexible system. The role of solvation, entropy, geometry, and torsional angles are assessed in accurately calculating the energies of the critical hydrogen bonds.
|
54 |
Conception, synthèse et évaluation biologique d'inhibiteurs fluorés non covalents du protéasome / Design, synthesis and biological test of fluorine non covalent protéasome inhibitorsKeita, Massaba 14 December 2012 (has links)
Le protéasome 26S est une macromolécule impliquée dans la dégradation de la majorité des protéines cellulaires. Parmi ces protéines, il y a les différents régulateurs de processus cruciaux tels que les protéines responsables de la progression du cycle cellulaire, de l’apoptose, des réponses inflammatoires, de l’activation de NF-B, de la présentation antigénique et de la différenciation cellulaire. Par conséquent, les inhibiteurs du protéasome sont des agents thérapeutiques dans des pathologies tels que le cancer, l’inflammation et les maladies auto-immunes. En effet, les inhibiteurs du protéasome sont connus pour induire la mort sélective des cellules cancéreuses tout en les rendant plus sensibles aux autres traitements anticancéreux existants (chimiothérapie, radiothérapie…). L’objectif de notre laboratoire est de développer des inhibiteurs non covalents du protéasome de structures peptidomimétiques fluorés ou non fluorés, et de montrer l’intérêt du fluor en chimie médicinale. Mon projet de thèse s’inscrit dans ce cadre. Dans un premier temps nous avons mis en évidence la grande diversité et la quantité des inhibiteurs du protéasome montrant ainsi l’importance de cette macromolécule comme cible dans le traitement du cancer. D’ailleurs, deux de ces inhibiteurs sont utilisés dans le traitement du myélome multiple et du lymphome du manteau et, plusieurs composés sont en études cliniques pour différents cancers. Nous avons aussi mis en évidence le bénéfice apporté par l’incorporation de groupement fluoré sur une molécule bioactive en particulier dans les structures peptidomimétiques. En revanche, ce rappel bibliographique a aussi montré que les peptidomimétiques contraints et fluorés sont peu décrits dans la littérature et le seul exemple à notre connaissance est l’analogue contraint et fluoré de la substance P contenant le motif (Z)-fluoroalcène.La deuxième partie de ces travaux de thèse s’est focalisée sur la conception, la synthèse et l’évaluation biologique d’inhibiteurs originaux du protéasome. Nous avons mis au point une synthèse facile et efficace de pseudopeptides possédant les motifs α et β-hydrazino acides et le motif β-hydrazino acide trifluorométhyle (schéma 1). Ces molécules inhibent de manière efficace le site CT-L du protéasome du lapin avec une IC50 de l’ordre du submicromolaire. Nous avons ainsi démontré que l’activité biologique est maintenue en remplaçant un α-amino acide par un scaffold α ou β-hydrazino acide. La pharmacomodulation effectuée autour de ces motifs nous a permis d’établir des relations structure-activité. Nous avons aussi mis au point un modèle de docking assez fiable qui va nous permettre de prédire le potentiel inhibiteur de nos futures molécules.Enfin, nous avons déterminé l’IC50 de nos molécules en utilisant la technique du FABS en RMN du 19F. Schéma1: voies d’accès aux peptidomimétiques contenant les motifs α et β-hydrazino acide et le motif β-hydrazino acide trifluorométhyl.Ces travaux de thèses ont été complétés par une méthodologie de synthèse portant sur le développement de nouveaux synthons contraints fluorés dans le but de les incorporer dans nos inhibiteurs de protéasome. Les cyclopropanes trifluorométhyles ont été obtenus en utilisant la réaction tandem de Michael, addition nucléophile suivie de cyclisation avec une excellente diastéréosélectivité pour certaines réactions. Les cyclopropanes obtenus ont été fonctionnalisés en amino acides ce qui faciliterait leur incorporation dans nos pseudopeptides. Les N-aminoaziridines fluorés ont été synthétisés à partir d’oléfines fluorés et de précurseurs de nitrène en présence de diacétate d’iodobenzène (PhI(OAc)2. L’incorporation de ces nouveaux scaffolds dans la structure de nos inhibiteurs de protéasome est en cours de réalisation dans le laboratoire. / The proteasome is a multicatalytic protease complex that is responsible for the ubiquitin-dependent turnover of cellular proteins. Proteasome substrates include misfolded or misassembled proteins as well as short-lived components of signaling cascades that regulate cell proliferation and survival pathways. Inhibition of the proteasome leads to an accumulation of substrate proteins and results in cell death. The proteasome consists of a 20S proteolytic core and two 19S regulatory caps that assemble with the core at either end to form a 26S complex. Clinical validation of the proteasome as a therapeutic target in oncology has been provided by bortezomib, a dipeptide boronic acid, which is approved for the treatment of patients with multiple myeloma1and mantle cell lymphoma. In the first part of my PhD, I designed (by the help of molecular modeling) and synthesized an original series of proteasome inhibitors introducing fluorinated peptidomimetics. Fluorine atom is able to favour hydrogen bond and to increase hydrophobicity and metabolic stability of the molecules. I also synthesized a series of non fluorinated peptidomimetics containing hydrazino acid moieties as proteasome inhibitors. Thereby, we designed and synthesized a library of 50 molecules that allowed us to establish a structure-activity relationship. The biological evaluation showed that half of these compounds have a micromolar IC50 (inhibitor concentration giving 50% inhibition). Then we decided to test the inhibitor activity of our synthesized molecules by 19F NMR using the FABS technique. So we developed a fluorine substrate for screening and determination of IC50 of our potential protéasome inhibitors. In order to increase the activity of our molecules and according to encouraging observation by molecular modelling, we decided to introduce constrained scaffolds such as trifluoromethyl cyclopropane or trifluoromethyl N-aminoaziridine scaffolds in our peptidomimetics structures. So we needed trifluoromethyl cyclopropane and trifluoromethyl N-aminoaziridine amino acids that could be easily incorporate in peptidic structure. To our knowledge there is no precedent on the synthesis of fluorinated N-aminoaziridines or trifluoromethyl cyclopropane β-amino acids which allowed us to develop a new synthesis methodology of these scaffolds. First, I synthesized different trifluoromethyl N-Aminoaziridine with several protective groups. The reaction of N-Aminoaziridine was performed in DCM with K2CO3 as base and (Diacetoxyiodo)benzene. For the synthesis of trifluomethyl cyclopropane β-amino acid, we used the cyclopropanation of Michael acceptors (tandem Michael Additions-Nucleophilic Cyclization (MA-NC)). Encouraged by this result and in order to develop different scaffolds trifluoromethyl cyclopropanes, we screened other nucleophiles. These scaffolds have been functionalized to amino acid in order to introduce it in peptidic structure.
|
55 |
Síntese de peptídeo modificado contendo grupo 1,2,3-triazol 1,4-dissubstituído / Synthesis of modified peptide containing 1,4-disubstituted 1,2,3- triazole groupLima, Milena Moreira 28 June 2013 (has links)
Peptídeos são biomoléculas que apresentam extensa variedade estrutural e funcional, atuando em diversos processos biológicos relevantes. Estas moléculas são amplamente utilizadas na terapêutica, constituindo, atualmente, um campo investigativo bastante promissor para o desenvolvimento de novos fármacos, especialmente no desenvolvimento de vacinas sintéticas. Os avanços científicos relacionados às técnicas de identificação, análise e purificação tem estimulado diversas pesquisas na busca por fármacos baseados em peptídeos, os quais podem ser obtidos a partir de fontes naturais ou por métodos químicos (em solução ou em fase sólida), enzimático ou combinação de ambos (semi-síntese) e via tecnologia do DNA recombinante. Entretanto, devido às limitações próprias dos peptídeos naturais, tais como, suscetibilidade proteolítica, toxicidade e baixa biodisponibilidade, torna-se necessária a síntese de peptídeos modificados. Como a função biológica de um peptídeo é definida por sua conformação estrutural, a inserção de modificação em uma estrutura peptídica deve ser capaz de manter ou estabilizar esta conformação estrutural. O desenvolvimento de novas e eficientes rotas de síntese de peptídeos modificados torna-se necessário para superar as limitações relacionadas à suscetibilidade proteolítica, toxicidade e baixa biodisponibilidade, afim de contribuir para novas estratégias terapêuticas, em especial no desenvolvimento de vacinas. Desta forma, a inserção de grupo 1,2,3-triazol tem fornecido propriedades físicoquímicas desejáveis no desenvolvimento de fármacos. O objetivo deste trabalho foi desenvolver um método de síntese de peptídeos contendo grupo 1,2,3-triazol 1,4- dissubstituído, como o peptídeo 1, o qual é constituído por dezesseis resíduos de treonina e um grupo 1,2,3-triazol 1-4-dissubstituído entre os resíduos Thr8 e Thr9 (NH2-(Thr)7-Thr-(ciclo 1,2,3-triazol 1,4-dissubstituído)-Thr-(Thr)7-OH). Adicionalmente, devido à semelhança com mucinas de T. cruzi, as quais apresentam rica composição em resíduos de treonina, 1 poderá ser empregado na preparação de peptideomiméticos destas mucinas e no desenvolvimento de vacinas relacionadas à processos infecciosos causados por T. cruzi. A preparação de 1 envolveu uma associação entre síntese de peptídeo em fase sólida e reações de ciclo-adição azido-alcino 1,3 dipolar catalisada por cobre (I) (CuAAC). Inicialmente, o método utilizado foi padronizado a partir da síntese do modelo dipeptídeo de treonina (8), cuja ligação peptídica foi substituída pelo grupo 1,2,3-triazol 1,4- dissubstituído (NHFmoc-Thr-(ciclo 1,2,3-triazol 1,4 dissubstituído)-Thr-OH). A estratégia via CuAAC conduziu à obtenção do dipeptídeo modificado em excelente rendimento (98%) e permitiu estabelecer as condições a serem empregadas na obtenção do peptídeo mais complexo de cadeia longa 1. A reação de CuAAC gerou o peptídeo 1 com rendimento bruto satisfatório (70%). A obtenção de 1 foi confirmada pela análise de Ressonância Magnética Nuclear de próton (RMN 1H), a qual permitiu identificar a presença do grupo 1,2,3-triazol 1,4-dissubstituído. Adicionalmente, análises posteriores por espectrometria de massas (ESI-MS) sugerem a obtenção do peptídeo 1. / Peptides are biomolecules which present great structural and functional variety, acting in several biological processes. These molecules are widely used in therapeutics, and recently represent a very promising field for development of novel drugs, specially on synthetic vaccines. Scientific advances related to identification techniques, analysis and purification stimulate researches in attempt to produce peptides-based drugs, which can be extracted from natural sources or chemically synthesized (in liquid or solid phase), enzymatic process or both (semi-synthesis) and recombinant DNA technology. However, due to limitations concerning natural peptides, such as, proteolytic liability, toxicity and low bioavailability, becomes necessary the synthesis of modified peptides. Being biological function of a peptide defined by its structural conformation, adding a modification in a peptide structure must be able to maintain or stabilize it. The development of novel and efficient synthetic route of modified peptides is necessary to overcome the limitations related to proteolytic liability, toxicity and low bioavailability, to contribute with novel therapeutic strategies, mostly development of vaccines. So, adding a 1,2,3-triazole group can afford desirable chemical-physical properties in drug discovery. The objective was develop a method to synthesize peptides containing 1,4-disubstituted 1,2,3-triazole group, such as peptide 1, which is constituted by sixteen threonine residues and one 1,4 disubstituted 1,2,3-triazole group (NH2-(Thr)7-Thr-(1,4- disubstituted 1,2,3-triazole cycle)-Thr-(Thr)7-OH). Moreover, due to the similarity with T. cruzi mucins that present great composition of threonine, 1 can be employed in development of vaccines related to infectious processes caused by T. cruzi. The preparation of 1 envolved an association between the solid-phase synthesis of peptide and reactions of copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Initially, the method was standardized from synthesis of threonine dipeptide (8), whose peptide bond was replaced by 1,4-disubstituted 1,2,3-triazole group (NHFmoc-Thr-(1,4-disubstituted 1,2,3-triazole cycle)-Thr-OH). The strategy via CuAAC gave the modified dipeptide in good yield (98%) and allowed to establish the conditions to prepare the more complex peptide with long chain 1. The CuAAC reaction gave the peptide 1 with good yield (70%). Compound 1 was confirmed by NMR proton analysis which showed the presence of 1,4-disubstituted 1,2,3-triazole group. Additionally, further analysis of mass spectrometry (ESI-MS) suggest the achievement of peptide 1.
|
56 |
Cationic amphipathic peptoid oligomers as antimicrobial peptide mimics / Peptoïdes cationiques amphiphiles comme mîmes de peptides antibactériensShyam, Radhe 18 May 2018 (has links)
Les organismes vivants produisent des peptides antimicrobiens (PAMs) pour se protéger contre les microbes. La résistance croissante aux antibiotiques nécessite le développement de nouvelles stratégies thérapeutiques et les PAMs sont des candidats prometteurs pour résoudre ce problème. Ils possèdent une activité à large spectre et leur principal mécanisme d'action par perméation de la membrane engendre peu de phénomènes de résistance. Néanmoins, leur faible biodisponibilité empêche leur utilisation. Certaines limitations peuvent être surmontées en développant des mîmes de PAMs qui conservent leur activité mais avec un potentiel thérapeutique accru. Les peptoïdes (oligomères de N-alkylglycine) structurés en hélice cationique amphiphile sont de bons mimes de PAMs. Les peptoïdes sont plus flexibles que les peptides en raison de l'isomérie cis/trans des amides N,N-disubstitués ; cependant la conformation des amides peut être contrôlée par un choix judicieux des chaînes latérales. Le but de cette thèse est d'étudier l'influence de chaînes latérales(hydrophobes ou cationiques) bloquant la conformation des amides en cis et induisant une structure hélicoïdale de type PolyProline I (PPI) robuste, sur l’activité antibactérienne et la sélectivité de peptoïdes. La conception, la synthèse et l’étude conformationnelle de nouveaux oligomères peptoïdes cationiques portant des chaînes latérales de type tert-butyle et/ou triazolium ont été réalisées. Dans un premier temps, la synthèse en solution d'oligomères à base de tert-butyle a été développée puis une stratégie de synthèse en phase solide a été mise en place pour accéder aux oligomères à base de 1,2,3-triazolium. Ensuite, ces nouveaux oligomères ont été évalués pour leur activité vis à vis d’un panel de bactéries Gram-positive et Gram-négative, leur l'activité antibiofilm et leur sélectivité cellulaire. Enfin, pour visualiser les effets des peptoïdes amphiphiles sur les bactéries, une étude de microscopie a été réalisée. / Living organisms produce antimicrobial peptides (AMPs) to protect themselves against microbes.The growing problem of antimicrobial resistance calls for new therapeutic strategies and the natural AMPs have shown ground-breaking potential to address that issue. They show broad-spectrum activity and their main mechanism of action by bacterial cell membrane disruption implies low emergence of resistance which makes them potent candidates for replacing conventional antibiotics. Nevertheless, few hurdles are impeding their use, notably poor bioavailability profile. Some of these limitations can be overcome by developing peptidomimetics of AMPs which exhibit antibacterial activities together with enhanced therapeutic potential. Peptoids (i.e. N-alkyl glycine oligomers) adopting cationic amphipathic helical structures are mostly competent AMP mimetics. From a conformational point of view, peptoids are fundamentally more flexible than peptides primarily due to the cis/trans isomerism of N,N-disubstituted amides but studies in this area have shown that cis amide conformation can be controlled by careful choice of side-chain to set a PolyProline I-type helical structure of peptoids. In this thesis, the genesis of novel amphipathic cationic peptoids carrying cis-directing tert-butyl and/or triazolium-type side-chains and their untapped potential to act against bacteria will be discussed comprehensively. First, the solutionphase synthesis of tert-butyl-based oligomers was developed. Second, novel method of solid-phase submonomer synthesis was optimised to access 1,2,3-triazolium-based oligomers. Then, the synthesised cationic oligomers were evaluated for their antibacterial potential, followed by antibiofilm activity and cell selectivity assays. In the end, to have insights on the mode of action of amphipathic peptoids, microscopy was carried out.
|
57 |
Exploring Key Orientations of Small Molecules to Disrupt Protein-protein InteractionsKo, Eunhwa 2012 May 1900 (has links)
Protein-protein interactions (PPIs) are attractive targets because of their therapeutic potential. One approach to design small molecules that can disrupt the PPIs is to use structural information of proteins. With this approach, triazole-based peptidomimetics that mimic beta-turn hot-spot regions in neurotrophins were synthesized. The monovalent mimics were assembled into bivalent mimics via a combinatorial method. Three different bivalent mimics were prepared for different studies. Bivalent mimics with long-linkers bound to TrkA or TrkC receptor and showed partial antagonism for the receptors. Other mimics were conjugated with cytotoxic compounds and they were used for TrkC targeted drug delivery. The last group of bivalent mimics previously showed targeted delivery effects for pancreatic cancer cells. In this study, we synthesized Eu-chelated bivalent mimics to perform a competitive binding assay for pancreatic cancer cells.
Previous research in our group focused on design of secondary structures' mimics on rigid scaffolds as "minimalist mimics." We sought to establish structural design criteria for the minimalist mimics, and we wanted to propose that sets of such compounds could mimic local pairs of amino acids in any secondary structures as "universal peptidomimetics." Thus, we designed five compounds, such as oxazoline-, pyrrole-, dyine- "kinked" and "linear" bistrizole-based peptidomimetics, and performed molecular modelings, DFT calculations, and QMD for them to validate our hypothesis.
On the concepts of "minimalist mimics" and "universal peptidomimetics," we developed the C alpha ? C beta vector matching program to evaluate preferred orientations of C alpha - C beta coordinates for secondary structures. We applied the program to omegatides and pyrrolinone-pyrrolidine oligomers. The compounds matched better with strands than for helices.
We expanded the C alpha ? C beta vector matching idea to a method that ranks preferred conformations of small molecules on any combination of three interface side-chains in all structurally characterized PPIs. We developed a PDB mining program (explores key orientation, EKO) to do this, and EKO applied to pyrrolinone-pyrrolidine oligomers to find targets. EKO found several interesting targets, such as AICAR Tfase, GAPDH, and HIV-1 protease. HIV-1 dimerization inhibition and Zhang-Poorman kinetic assays were performed to validate our hypothesis, and the results showed that pyrrolinone-pyrrolidine derivatives inhibited HIV-1 dimerization.
|
58 |
NMR as a tool in drug research : Structure elucidation of peptidomimetics and pilicide-chaperone complexesHedenström, Mattias January 2004 (has links)
In the last decades NMR spectroscopy has become an invaluable tool both in academic research and in the pharmaceutical industry. This thesis describes applications of NMR spectroscopy in biomedicinal research for structure elucidation of biologically active peptides and peptidomimetics as well as in studies of ligand-protein interactions. The first part of this thesis describes the theory and methodology of structure calculations of peptides using experimental restraints derived from NMR spectroscopy. This methodology has been applied to novel mimetics of the peptide hormones desmopressin and Leu-enkephalin. The results of these studies highlight the complicating issue of conformational exchange often encountered in structural determination of peptides and how careful analysis of experimental data as well as optimization of experimental conditions can enable structure determinations in such instances. Although the mimetics of both desmopressin and Leu-enkephalin were found to adopt the wanted conformations, they exhibited no or very poor biological activity. These results demonstrate the difficulties in designing peptidomimetics without detailed structural information of the receptors. A stereoselective synthetic route towards XxxΨ[CH2O]Ala pseudodipeptides is also presented. Such pseudodipeptides can be used as isosteric amide bond replacements in peptides in order to increase their resistance towards proteolytic degradation. The second part of this thesis describes the study of the interaction between compounds that inhibit pilius assembly, pilicides, and periplasmic chaperones from uropathogenic Escherichia coli. Periplasmic chaperones are key components in assembly of pili, i.e. hair-like protein complexes located on the surface of Escherichia coli that cause urinary tract infections. Detailed knowledge about this interaction is important in understanding how pilicides can inhibit pilus assembly by binding to chaperones. Relaxation-edited NMR experiments were used to confirm the affinity of the pilicides for the chaperones and chemical shift mapping was used to study the pilicide-chaperone interaction surface. These studies show that at least two interaction sites are present on the chaperone surface and consequently that two different mechanisms resulting in inhibition of pilus assembly may exist.
|
59 |
Design and Synthesis of Novel AT2 Receptor Ligands : From Peptides to Drug-Like MoleculesGeorgsson, Jennie January 2006 (has links)
Many peptide receptors are of pharmaceutical interest and there is thus a need for new ligands for such receptors. Unfortunately, peptides are not suitable as orally administrated drugs since they are associated with poor absorption, rapid metabolism and low sub-receptor selectivity. One approach that should allow identification of more drug-like ligands is to use the structural information of the endogenous ligand to develop peptidomimetic compounds. The main objective of the work described in this thesis was to convert angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) to small drug-like compounds with retained bioactivity at the AT2 receptor. The study was performed step-wise via incorporation of well-defined secondary structure mimetics and repeated truncation of the peptide. Five scaffolds, comprising a benzene ring as a central element, suitable as a γ-turn or dipeptide mimetics were designed and synthesized. In order to decorate the scaffolds, a method of microwave-assisted alkoxycarbonylation was developed. After incorporation of the scaffolds into Ang II-related peptides or peptide fragments, the affinities for both the AT1 and the AT2 receptor were determined. In the first series of ligands, two tyrosine-related scaffolds were introduced as γ-turn mimetics in Ang II. All five pseudopeptides exhibited good affinities for the AT2 receptor. One compound was chosen for functional studies and was shown to act as an AT2 receptor agonist. After truncation of Ang II it was shown that C-terminal pentapeptide analogs were AT2 receptor selective agonists. A series of pseudopeptides comprising tyrosine-related scaffolds, derived from the pentapeptides, displayed high AT2 receptor affinities. Two compounds had agonistic effect at the AT2 receptor. This study revealed that the N-terminal part was of less importance while a C-terminal Ile residue was a key element for enhanced AT2 receptor affinity. In the final set of compounds, the peptide was truncated to tripeptide C-terminal fragments. After replacing His-Pro by a histidine-related scaffold small drug-like peptidomimetic compounds with nanomolar affinity for the AT2 receptor were identified.
|
60 |
Computational Studies on the Structure and Dynamics of Bioactive Peptides.Corcho Sánchez, Francisco José 26 January 2004 (has links)
The present work focuses on the exploration of the conformational space of biological active peptides in different conditions with the aim of characterizing their conformational profile. Different techniques have been used within the molecular mechanics framework. A first hurdle is encountered in the exploration as the exhaustiveness of the exploration and the definition of a criterion for stopping the procedure were not well defined at the beginning of the present work. A solution to this problem is presented in the second chapter for the iterative simulated annealing.Determining the bioactive conformation is a requirement for the design of peptidomimetics in computer-aided drug design. The bioactive conformation can be simplified by the moieties that are known to interact with the receptor and the relative distances between these moieties, and this schematic entity is termed pharmacophore. The pharmacophore can be used to screen three-dimensional databases of molecules for the search of peptidomimetics. The compounds obtained in the search can be subsequently tested for activity and a new group of lead compounds can be thus identified. In chapter 3 an example of this procedure is described with the aim of obtaining a new group of bradykinin antagonists.Peptides have been traditionally considered as flexible molecules especially in polar solvents like water. This flexibility is difficult to measure by experimental techniques and as a consequence peptides have been regarded as molecules lacking of structure under such conditions. On the other hand, biological active peptides are known to interact with their receptors in a preferred conformation, often termed as the bioactive conformation. The most accepted hypothesis for explaining the interaction of peptides and their receptors is the induced fit. Thus, the peptide will exhibit in solution conformational motives that are part of the conformation adopted in the receptor. Subsequent to the binding of the peptide to the receptor, the conformation in solution will be modified in order to optimize the interaction of the peptide to the receptor. Therefore, a contradiction appears to exist between the need for certain degree of structure in the peptide prior to the receptor binding and the inherent lack of structure of peptides in solution. It has been argued in some instances that the binding of the peptide to the biological membrane is a prerequisite for the adoption of the bioactive conformation and the subsequent binding to the receptor. In chapters 4 and 5 this hypothesis will be criticized and an alternative hypothesis will be presented.Recently, it has been reported several instances were the folding of peptides has been simulated by means of long molecular dynamics trajectories. A problem arises when the wealth of conformations obtained has to be classified in terms of their respective degree of folding. In chapter 4 a novel methodology is described for the classification and grouping of the peptide structures based on the presence of structural motifs and the similarities among them. This methodology can prove very useful as it almost automated and it does not present any limitation regarding the size of the peptide or protein of study.In order to follow what are the problems arising when the size and the flexibility of peptides are increased, the sequence of chapters of the present study is presented with increasing size. Thus, in chapter 2 the conformational profile of 4-residue long farnesyltransferase inhibitors is studied by means of the iterative simulated annealing procedure. The first part of chapter 3 deals with a bradykinin antagonist, Hoe 140. Although Hoe 140 with 10 residues is larger than the 4-residue farnesyltransferase inhibitors, the conformational diversity of the peptide is only considered for the last 5 residues. This simplification of the peptide is carried out in order to compare the conformational profiles of Hoe 140 and the group of bradykinin analogs presented in the second part of the chapter: 5-residue long peptides containing 1-amino-2-phenylclyclopropanecarboxylic acid, a conformationally restricted residue. Finally, chapters 4 and 5 are dedicated to an 11-residue neuropeptide: substance P. The increase in size provoked a change in the methodology. Indeed, the conformational profile of the peptide has been studied by means of iterative simulated annealing and extensive molecular dynamics trajectories. This has permitted the comparison between both methodologies and to derive conclusions to the kind of information that can be obtained through these different methodologies for the exploration of the conformational space of peptides.The present work has been partially published through two papers:F.J Corcho, M. Filizola, J.J. Pérez. Evaluation of the iterative simulated annealing technique in conformational search of peptides. Chemical Physics Letters. 2000, 319: 65-70.F.J. Corcho, M. Filizola y J.J. Pérez. Assessment of the bioactive conformation of the farnesyltransferase protein binding recognition motif by computational methods.Journal of Biomolecular Structure and Dynamics. 1999, 16(5): 1043-1052. / El present treball està dedicat a l'exploració de l'espai conformacional de pèptids biològicament actius, sota diferent condicions, amb l'objectiu de caracteritzar el seu perfil conformacional. S'han usat diferents tècniques dins del marc de la mecànica molecular. Un primer obstacle a l'inici d'aquest treball va ser la definició d'un criteri per mesurar com d'exhaustiu havia estat i quan s'havia d'aturar la cerca. Al segon capítol es presenta una solució a aquest problema per al recuit simulat iteratiu.La determinació de la conformació bioactiva és un requeriment per al disseny de peptidomimetics assistit per ordinador. La conformació bioactiva pot ser simplificada prenent els grups funcionals que se sap que interactuen amb el receptor i la distància relativa entre aquests grups. Aquesta entitat esquemàtica és anomenada farmacòfor. El farmacòfor pot ésser utilitzat per cribar bases de dades tridimensionals de molècules per a la cerca de peptidomimètics. A continuació, per als compostos obtinguts en la cerca es pot testar la seva activitat i identificar així un nou grup de caps de sèrie. Al capítol 3 es descriu un exemple d'aquest procediment que té com a objectiu l'obtenció d'un nou grup d'antagonistes de la bradiquinina.Els pèptids han sigut tradicionalment considerats molècules flexibles especialment en solvents polars com l'aigua. La flexibilitat és difícil de mesurar mitjançant tècniques experimentals i com a conseqüència els pèptids han sigut considerats molècules que no presentaven estructura sota aquestes condicions. Per una altra banda els pèptids biològicament actius se sap que interactuen amb els seus receptors a través d'una conformació preferida, sovint anomenada conformació bioactiva. La hipòtesi més acceptada per explicar la interacció dels pèptids i els seus receptors és l'ajustament induït o "induced fit". Així, el pèptid mostrarà en solució motius conformacionals que són part de la conformació adoptada al receptor. Posteriorment a la unió del pèptid al receptor, la conformació en solució serà modificada de manera que s'optimitzi la interacció del pèptid i el receptor. Per tant, sembla existir una contradicció entre la necessitat de que hi hagi un cert grau d'estructura en el pèptid prèviament a la unió al receptor i la manca d'estructura del pèptid en solució. En alguns casos s'ha argumentat que la unió del pèptid a la membrana biològica és un prerequisit per a l'adopció de la conformació bioactiva i la subsegüent unió al receptor. Als capítols 4 i 5 aquesta hipòtesi és criticada i es presenta una hipòtesi alternativa.Recentment, s'han presentat diferent exemples de plegament de pèptids que han sigut simulats mitjançant llargues trajectòries de dinàmica molecular. Sorgeix un problema quan la gran diversitat de conformacions obtingudes ha de ser classificada en termes del seu grau de plegament respectiu. Al capítol 4 es descriu una nova metodologia per a la classificació i l'agrupament d'estructures peptídiques basades en la presència de motius estructurals i les similituds entre elles. Aquesta metodologia pot resultar molt útil ja que és gairebé automàtica i no presenta cap tipus de limitació respecte al tamany del pèptid o la proteïna en estudi.Per tal de seguir els problemes que apareixen quan la mida i la flexibilitat dels pèptids s'incrementen, la seqüència dels capítols d'aquest estudi es presenta amb mida dels pèptids creixent. Així, al capítol 2 el perfil conformacional dels inhibidors de la farnesiltransferasa que tenen una llargària de 4 residus és estudiat mitjançant el procés de recuit simulat iteratiu. La primera part del capítol 3 tracta amb un antagonista de la bradiquinina, Hoe 140. Malgrat que Hoe 140 amb 10 residus és més gran que els inhibidors de la farnesiltransferasa, que tenen 4 residus, la diversitat conformacional del pèptid només s'ha considerat pels darrers 5 residus. Aquesta simplificació del pèptid es realitza per tal de comparar el perfils conformationals de Hoe 140 i d'un grup d'anàlegs de la bradiquinina, que es presenten a la segona part del capítol, de 5 residus de llargària i que contenen l'àcid 1-amino-2-fenilciclopropacarboxílic que és un residu conformacionalment restringit. Finalment, els capítols 4 i 5 estan dedicats a un neuropèptid d'onze residus: substància P. L'increment de la mida va provocar un canvi en la metodologia emprada. Així, el perfil conformacional del pèptid ha sigut estudiat mitjançant el recuit simulat iteratiu i mitjançant trajectòries extenses de dinàmica molecular. Això ha permès la comparació entre ambdues metodologies i l'extracció de conclusions sobre el tipus d'informació que pot obtenir-se a través de les diferents metodologies per a l'exploració de l'espai conformacional de pèptids.El present treball s'ha publicat parcialment a dos articles:F.J Corcho, M. Filizola, J.J. Pérez. Evaluation of the iterative simulated annealing technique in conformational search of peptides. Chemical Physics Letters. 2000, 319: 65-70.F.J. Corcho, M. Filizola y J.J. Pérez. Assessment of the bioactive conformation of the farnesyltransferase protein binding recognition motif by computational methods.Journal of Biomolecular Structure and Dynamics. 1999, 16(5): 1043-1052. / de la Tesis DoctoralEl presente trabajo está dedicado a la exploración del espacio conformacional de pèptids biológicamente activos, bajo diferentes condiciones, i con el objetivo de caracterizar su perfil conformacional. Se han usado diferentes técnicas dentro del marco de la mecánica molecular. Un primer obstáculo al inicio de este trabajo fue la definición de un criterio para medir como de exhaustivo había sido y cuando se debía detener la búsqueda. En el segundo capítulo se presenta una solución a este problema para al recocido simulado iterativo.La determinación de la conformación bioactiva es un requerimiento para al diseño de peptidomiméticos asistido por ordenador. La conformación bioactiva puede ser simplificada tomando los grupos funcionales que se sabe que interactúan con el receptor y la distancia relativa entre estos grupos. Esta entidad esquemática es llamada farmacóforo. El farmacóforo puede ser utilizado para cribar bases de datos tridimensionales de moléculas para la búsqueda de peptidomiméticos. A continuación, para los compuestos obtenidos en la búsqueda se puede testar la actividad e identificar así un nuevo grupo de cabezas de serie. En el capítulo 3 se describe un ejemplo de este procedimiento que tiene como objetivo la obtención de un nuevo grupo de antagonistas de la bradiquinina.Los péptidos han sido tradicionalmente considerados moléculas flexibles especialmente en solventes polares como el agua. La flexibilidad es difícil de medir mediante técnicas experimentales y como consecuencia los péptidos han sido considerados moléculas que no presentaban estructura bajo estas condiciones. Por otra parte los péptidos biológicamente activos se sabe que interactúan con sus receptores a través de una conformación preferida, a menudo llamada conformación bioactiva. La hipótesis más aceptada para explicar la interacción de los péptidos y sus receptores es el ajuste inducido o "induced fit". Así, el péptid mostrará en solución motivos conformacionales que son parte de la conformación adoptada en el receptor. Posteriormente a la unión del péptido al receptor, la conformación en solución será modificada de manera que se optimice la interacción del péptido y el receptor. Por tanto, parece existir una contradicción entre la necesidad de que haya un cierto grado de estructura en el péptido previamente a la unión al receptor y la ausencia de estructura del péptido en solución. En algunos casos se ha argumentado que la unión del péptido a la membrana biológica es un prerrequisito para la adopción de la conformación bioactiva y la subsiguiente unión al receptor. En los capítulos 4 i 5 esta hipótesis es criticada y se presenta una hipótesis alternativa.Recientemente, se han presentado diferentes ejemplos de plegamiento de péptidos que han sido simulados mediante largas trayectorias de dinámica molecular. Surge un problema cuando la gran diversidad de conformaciones obtenidas ha de ser clasificada en términos de su grado de plegamiento respectivo. En el capítulo 4 se describe una nueva metodología para la clasificación y el agrupamiento de estructuras peptídicas basadas en la presencia de motivos estructurales y las similitudes entre ellas. Esta metodología puede resultar muy útil ya que está casi automatizada y no presenta ningún tipo de limitación respecto al tamaño del péptido o la proteína en estudio.Con el objetivo de seguir los problemas que aparecen cuando la medida y la flexibilidad de los péptidos se incrementan, la secuencia de los capítulos de este estudio se presenta con la medida de los péptidos creciente. Así, en el capítulo 2 el perfil conformacional de los inhibidores de la farnesiltransferasa que tienen una longitud de 4 residuos es estudiado mediante el proceso del recocido simulado iterativo. La primera parte del capítulo 3 trata con un antagonista de la bradiquinina, Hoe 140. Aunque Hoe 140 con 10 residuos es más grande que los inhibidores de la farnesiltransferasa, que tienen 4 residuos, la diversidad conformacional del péptido solo se ha considerado para los últimos 5 residuos. Esta simplificación del péptido se realiza por tal de comparar los perfiles conformationales de Hoe 140 y de un grupo de análogos de la bradiquinina, que se presentan en la segunda parte del capítulo, de 5 residuos de longitud y que contienen el ácido 1-amino-2-fenilciclopropacarboxílico que es un residuo conformacionalmente restringido. Finalmente, los capítulos 4 y 5 están dedicados a un neuropéptido de once residuos: sustancia P. El incremento de la medida provocó un cambio en la metodología utilizada. Así, el perfil conformacional del péptido ha sido estudiado mediante el recocido simulado iterativo y mediante trayectorias extensas de dinámica molecular. Esto ha permitido la comparación entre ambas metodologías y la extracción de conclusiones sobre el tipo de información que se puede obtener a través de las diferentes metodologías para la exploración del espacio conformacional de péptidos.El presente trabajo se ha publicado parcialmente en dos artículos:F.J Corcho, M. Filizola, J.J. Pérez. Evaluation of the iterative simulated annealing technique in conformational search of peptides. Chemical Physics Letters. 2000, 319: 65-70.F.J. Corcho, M. Filizola y J.J. Pérez. Assessment of the bioactive conformation of the farnesyltransferase protein binding recognition motif by computational methods.Journal of Biomolecular Structure and Dynamics. 1999, 16(5): 1043-1052.
|
Page generated in 0.0641 seconds