• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Light-activated Binary Nucleotide Reagent For Inactivation Of Dna Polymerase

Cornett, Evan M 01 January 2012 (has links)
This work explores a binary reagent approach to increase the specificity of covalent inhibitors. In this approach, two ligand analogs equipped with inert pre-reactive groups specifically bind a target biopolymer. The binding event brings the pre-reactive groups in proximity with each other. The two groups react, generating active chemical intermediates that covalently modify and inactivate the target. In the present study we compare the new approach with the traditional single-component reagent strategy using DNA polymerase from bacteriophage T4 as a model target biopolymer. We report the design and synthesis of two analogs of deoxythymidine triphosphate, a natural DNA polymerase substrate. Together, the analogs function as a binary nucleotide reagent which is activated by light with wavelengths 365 nm and longer. However, the active analog functions as a traditional single component reagent when activated by light with wavelengths at 300 nm and longer. The traditional single-component reagent efficiently inactivated DNA polymerase. However, in the presence of non-target protein the inactivation efficiency is greatly diminished. Under the same conditions, the binary nucleotide reagent also inactivated DNA polymerase, and the inactivation efficiency is not affected by the presence of the non-target protein. Our results validate that a binary approach can be employed to design highly specific covalent inhibitors. The binary reagent strategy might be useful as a research tool for investigation of ligand-protein interactions in complex biological systems and for drug design
2

A Binary Approach for Selective Recognition of Nucleic Acids and Proteins

Cornett, Evan 01 January 2015 (has links)
The design of probes for the selective recognition of biopolymers (nucleic acids and proteins) is a fundamental task for studying, diagnosing, and treating diseases. Traditional methods utilize a single component (small molecule or oligonucleotide) that binds directly to the target biopolymer. However, many biopolymers are unable to be targeted with this approach. The overarching goal of this dissertation is to explore a new, binary approach for designing probes. The binary approach requires two components that cooperatively bind to the target, triggering a recognition event. The requisite binding of two-components allows the probes to have excellent selectivity and modularity. The binary approach was applied to design a new sensor, called operating cooperatively (OC) sensor, for recognition of nucleic acids, including selectively differentiating between single nucleotide polymorphisms (SNPs). An OC sensor contains two oligonucleotide probe strands, called O and C, each with two domains. The first domain contains a target recognition sequence, whereas the second domain is complementary to a molecular beacon (MB) probe. Binding of both probe strands to the fully matched analyte generates a full MB probe recognition site, allowing a MB to bind and report the presence of the target analyte. Importantly, we show that the OC sensor selectively discriminates between single nucleotide polymorphisms (SNPs) in DNA and RNA targets at room temperature, including those with stable secondary structures. Furthermore, the combinatorial use of OC sensors to create a DNA logic gate capable of analyzing DNA sequences of Mycobacterium tuberculosis is described. The binary approach was also applied to design covalent inhibitors for HIV-1 reverse transcriptase (RT). In this application, two separate pre-reactive groups were attached to a natural RT ligand, deoxythymidine triphosphate (dTTP). Upon binding of both dTTP analogs in the RT active site, the pre-reactive groups are brought into the proper proximity and react with each other forming an intermediate that subsequently reacts with an amino acid side chain from the RT. This leads to covalent modification of RT, and inhibition of its DNA polymerase activity. This concept was tested in vitro using dTTP analogs containing pre-reactive groups derived from ?-lactamase inhibitors clavulanic acid (CA) and sulbactam (SB). Importantly, our in vitro assays show that CA based inhibitors are more potent than zidovudine (AZT), a representative of the dominant class of RT inhibitors currently used in anti-HIV therapy. Furthermore, molecular dynamics simulations predict that complexes of RT with these analogs are stable, and point to possible reaction mechanisms. The inhibitors described in this work may serve as the basis for the development of the first covalent inhibitors for RT. Moreover, the pre-reactive groups used in this study can be used to design covalent inhibitors for other targets by attaching them to different ligands. Overall, the work presented herein establishes the binary approach as a straightforward way to develop new probes to selectively recognize nucleic acids and proteins.
3

Structure-Based Design of Novel Inhibitors and Ultra High Resolution Analysis of CTX-M Beta-Lactamase

Nichols, Derek Allen 01 May 2014 (has links)
The emergence of CTX-M class-A extended-spectrum β-lactamases, which confer resistance to second and third-generation cephalosporins, poses a serious health threat to the public. CTX-M β-lactamases use a catalytic serine to hydrolyze the β-lactam ring. Specifically, the hydrolysis reaction catalyzed by CTX-M β-lactamase proceeds through a pre-covalent complex, a high-energy tetrahedral acylation intermediate, a low-energy acyl-enzyme complex, a high-energy tetrahedral deacylation intermediate after attack via a catalytic water, and lastly, the hydrolyzed β-lactam ring product which is released from the enzyme complex. The crystallographic structure of CTX-M at sub-angstrom resolution has enabled us to study enzyme catalysis as well as perform computational molecular docking in our efforts to develop new inhibitors against CTX-M. The goal of this project was to determine the hydrogen bonding network and proton transfer process at different stages of the reaction pathway as well as develop novel inhibitors against CTX-M β-lactamases. The results I have obtained from the project have elucidated the catalytic mechanism of CTX-M β-lactamase in unprecedented detail and facilitated the development of novel inhibitors for antibiotic drug discovery. The first aim of the project focused on developing high affinity inhibitors against class A β-lactamase using a structure-based drug discovery approach, which ultimately led to the identification of CTX-M9 inhibitors with nanomolar affinity. Compound design was based on the initial use of computational molecular docking results along with x-ray crystal structures with known inhibitors bound in the active site. In addition, chemical synthesis was used to build and extend the existing inhibitor scaffold to improve affinity to CTX-M9 and related serine β-lactamases. Through a fragment-based screening approach, we recently identified a novel non-covalent tetrazole-containing inhibitor of CTX-M. Structure-based design was used to improve the potency of the original tetrazole lead compound more than 200-fold with the use of small, targeted structural modifications. A series of compounds were used to probe specific binding hotspots present in CTX-M. The designed compounds represent the first nM-affinity non-covalent inhibitors of a class A β-lactamase. The complex structures of these potent compounds have been solved using high resolution x-ray crystallography at ~ 1.2-1.4 Å, which provides valuable insight about ligand binding and future inhibitor design against class A β-lactamases. Specifically, the first aim of the project was to use ultra-high resolution x-ray crystallography to study β-lactamase catalysis. Through the use of ultra-high resolution x-ray crystallography with non-covalent and covalent inhibitors, I was able to structurally characterize the critical stages of the enzyme mechanism. Here we report a series of ultra-high resolution x-ray crystallographic structures that reveal the proton transfer process for the early stages of the class A β-lactamase catalytic mechanism. The structures obtained include an a 0.89 Å crystal structure of CTX-M β-lactamase in complex with a recently-developed 89 nM non-covalent inhibitor, and a 0.80 Å structure in complex with an acylation transition state boronic acid inhibitor. Nearly all the hydrogen atoms in the active site, including those on the ligand, polar protein side chains and catalytic water, can be identified in the unbiased difference electron density map. Most surprisingly, compared with a previously determined 0.88 Å apo structure determined under the same conditions, the hydrogen-bonding network has undergone a series of reshuffling upon the binding of the non-covalent ligand. Two key catalytic residues, Lys73 and Glu166, appear to have both changed from a charged state to being neutral. Interestingly, structural evidence suggests the presence of a low barrier hydrogen bond (LBHB) shared between Lys73 and Ser70. These unprecedented detailed snapshots offer direct evidence that ligand binding can alter the pKa's of polar protein side chains and their affinities for protons. Such effects can be a common mechanism utilized by enzymes to facilitate the proton transfer process of a reaction pathway. They also have important implications for computational modeling of protein-ligand interactions. Ultra-high resolution x-ray crystallography allowed us to determine the hydrogen atom positions for key active site residues involved in catalysis. As a result, the ability to characterize the hydrogen bonding network led to the determination of the specific proton transfer process that occurs during the reaction stages of the CTX-M β-lactamase mechanism. Overall, the results from this project demonstrate the effectiveness of using ultra high resolution x-ray crystallography as a useful tool to study enzyme catalysis as well as develop and discover novel inhibitors.
4

The Design, Synthesis and Biological Assay of Cysteine Protease Specific Inhibitors

Mehrtens (nee Nikkel), Janna Marie January 2007 (has links)
This thesis investigates the design, synthesis and biological assay of cysteine protease inhibitors within the papain superfamily of cysteine proteases. This is achieved by examining the effect of inhibitor design, especially warheads, on IC₅₀ values and structureactivity relationships between cysteine protease inhibitors of the papain superfamily. The representative proteases used are m-calpain, μ-calpain, cathepsin B and papain. Chapter One is an introductory chapter; Chapters Two-Four describe the design and synthesis of cysteine protease inhibitors; Chapter Five discusses assay protocol; and Chapter Six contains the assay results and structure-activity relationships of the synthesised inhibitors. Chapter One introduces cysteine proteases of the papain family and examines the structure, physiology and role in disease of papain, cathepsin B, m-calpain and μ-calpain. The close structural homology that exists between these members of the papain superfamily is identified, as well characteristics unique to each protease. Covalent reversible, covalent irreversible and non-covalent warheads are defined. The generic inhibitor scaffold of address region, recognition and warhead, upon which the inhibitors synthesised in this thesis are based, is also introduced. Chapter Two introduces reversible cysteine protease inhibitors found in the literature and that little is known about the effect of inhibitor warhead on selectivity within the papain superfamily. Oxidation of the dipeptidyl alcohols 2.6, 2.26, 2.29, 2.30, 2.35 and 2.36 utilising the sulfur trioxide-pyridine complex gave the aldehydes 2.3, 2.27, 2.19, 2.2, 2.21 and 2.22. Semicarbazones 2.37-2.40 were synthesised by a condensation reaction between the alcohol 2.3 and four available semicarbazides. The amidoximes 2.48 and 2.49 separately underwent thermal intramolecular cyclodehydration to give the 3-methyl-1,2,4- oxadiazoles 2.41 and 2.50. The aldehydes 2.3 and 2.27 were reacted with potassium cyanide to give the cyanohydrins 2.51 and 2.52. The cyanohydrins 2.51 and 2.52 were separately reacted to give 1) the α-ketotetrazoles 2.43 and 2.55; 2) the α-ketooxazolines 2.42 and 2.58; 3) the esterified cyanohydrins 2.60 and 2.61. A two step SN2 displacement reaction of the alcohol 2.6 to give the azide 2.62, an example of a non-covalent cysteine protease inhibitor. Chapter Three introduces inhibitors with irreversible warheads. The well-known examples of epoxysuccinic acids 3.1 and 3.5 are discussed in detail, highlighting the lack of irreversible cysteine protease specific inhibitors. The aldehydes 2.3 and 2.27 were reacted under Wittig conditions to give the α,β-unsaturated carbonyls 3.14-3.18. Horner- Emmons-Wadsworth methodology was utilised for the synthesis of the vinyl sulfones 3.20- 3.23. The dipeptidyl acids 2.24 and 2.28 were separately reacted with diazomethane to give the diazoketones 3.25 and 3.26. The diazoketones 3.25 and 3.26 were separately reacted with hydrogen bromide in acetic acid (33%) to give the α-bromomethyl ketones 3.27 and 3.28, which were subsequently reduced to give the α-bromomethyl alcohols 3.29-3.32. Under basic conditions the α-bromomethyl alcohols 3.29-3.32 ring-closed to form the peptidyl epoxides 3.33-3.36. Chapter Four introduces the disadvantages of peptide-based inhibitors. A discussion is given on the benefits of constraining inhibitors into the extended bioactive conformation known as a β-strand. Ring closing metathesis is utilised in the synthesis of the macrocyclic aldehyde 4.4, macrocyclic semicarbazone 4.15, the macrocyclic cyanohydrin 4.16, the macrocyclic α-ketotetrazole 4.18 and the macrocyclic azide 4.19. Chapter Five introduces enzyme inhibition studies. The BODIPY-casein fluorogenic assay used for establishing inhibitor potency against m-calpain and μ-calpain is validated. Assay protocols are also established and validated for cathepsin B, papain, pepsin and α- chymotrypsin. A discussion of the effect of solvent on enzyme activity is also included as part of this study. Chapter Six presents the assay results for all the inhibitors synthesised throughout this thesis and an extensive structure-activity relationship study between inhibitors is included. The alcohols 2.26 and 2.30 are unprecedented examples of non-covalent, potent, cathepsin B inhibitors (IC₅₀ = 0.075 μM selectivity 80-fold and 1.1 μM, selectivity 18-fold). The macrocyclic semicarbazone 4.15 is an unprecedented example of a potent macrocyclic cysteine protease inhibitor (m-calpain: IC₅₀ = 0.16 μM, selectivity 8-fold). The cyanohydrin 2.51 contains an unprecedented cysteine protease warhead and is a potent and selective inhibitor of papain (IC₅₀ = 0.030 μM, selectivity 3-fold). The O-protected cyanohydrin 2.61 is a potent and selective inhibitor of pepsin (IC₅₀ = 1.6 μM, selectivity 1.5-fold). The top ten warheads for potent, selective cathepsin B inhibition are: carboxylic acid, methyl ester, diazoketone, esterified cyanohydrin, α-bromomethyl ketone, α,β- unsaturated aldehyde, vinyl sulfones, α-bromomethyl-C₃-S,R-alcohol, alcohol and α,β- unsaturated ethyl ester. The selectivity of these warheads was between 5- and 130-fold for cathepsin B. The best inhibitors for cathepsin B were the α-bromomethyl ketone 3.26 (IC₅₀ = 0.075 μM, selectivity 16-fold), the α,β-unsaturated aldehyde 3.18 (IC₅₀ = 0.13 μM, selectivity 13-fold) and the esterified cyanohydrin 3.59 (IC₅₀ = 0.35 μM, selectivity 22- fold). Chapter Seven outlines the experimental details and synthesis of the compounds prepared in this thesis.
5

The Design, Synthesis and Biological Assay of Cysteine Protease Specific Inhibitors

Mehrtens (nee Nikkel), Janna Marie January 2007 (has links)
This thesis investigates the design, synthesis and biological assay of cysteine protease inhibitors within the papain superfamily of cysteine proteases. This is achieved by examining the effect of inhibitor design, especially warheads, on IC₅₀ values and structureactivity relationships between cysteine protease inhibitors of the papain superfamily. The representative proteases used are m-calpain, μ-calpain, cathepsin B and papain. Chapter One is an introductory chapter; Chapters Two-Four describe the design and synthesis of cysteine protease inhibitors; Chapter Five discusses assay protocol; and Chapter Six contains the assay results and structure-activity relationships of the synthesised inhibitors. Chapter One introduces cysteine proteases of the papain family and examines the structure, physiology and role in disease of papain, cathepsin B, m-calpain and μ-calpain. The close structural homology that exists between these members of the papain superfamily is identified, as well characteristics unique to each protease. Covalent reversible, covalent irreversible and non-covalent warheads are defined. The generic inhibitor scaffold of address region, recognition and warhead, upon which the inhibitors synthesised in this thesis are based, is also introduced. Chapter Two introduces reversible cysteine protease inhibitors found in the literature and that little is known about the effect of inhibitor warhead on selectivity within the papain superfamily. Oxidation of the dipeptidyl alcohols 2.6, 2.26, 2.29, 2.30, 2.35 and 2.36 utilising the sulfur trioxide-pyridine complex gave the aldehydes 2.3, 2.27, 2.19, 2.2, 2.21 and 2.22. Semicarbazones 2.37-2.40 were synthesised by a condensation reaction between the alcohol 2.3 and four available semicarbazides. The amidoximes 2.48 and 2.49 separately underwent thermal intramolecular cyclodehydration to give the 3-methyl-1,2,4- oxadiazoles 2.41 and 2.50. The aldehydes 2.3 and 2.27 were reacted with potassium cyanide to give the cyanohydrins 2.51 and 2.52. The cyanohydrins 2.51 and 2.52 were separately reacted to give 1) the α-ketotetrazoles 2.43 and 2.55; 2) the α-ketooxazolines 2.42 and 2.58; 3) the esterified cyanohydrins 2.60 and 2.61. A two step SN2 displacement reaction of the alcohol 2.6 to give the azide 2.62, an example of a non-covalent cysteine protease inhibitor. Chapter Three introduces inhibitors with irreversible warheads. The well-known examples of epoxysuccinic acids 3.1 and 3.5 are discussed in detail, highlighting the lack of irreversible cysteine protease specific inhibitors. The aldehydes 2.3 and 2.27 were reacted under Wittig conditions to give the α,β-unsaturated carbonyls 3.14-3.18. Horner- Emmons-Wadsworth methodology was utilised for the synthesis of the vinyl sulfones 3.20- 3.23. The dipeptidyl acids 2.24 and 2.28 were separately reacted with diazomethane to give the diazoketones 3.25 and 3.26. The diazoketones 3.25 and 3.26 were separately reacted with hydrogen bromide in acetic acid (33%) to give the α-bromomethyl ketones 3.27 and 3.28, which were subsequently reduced to give the α-bromomethyl alcohols 3.29-3.32. Under basic conditions the α-bromomethyl alcohols 3.29-3.32 ring-closed to form the peptidyl epoxides 3.33-3.36. Chapter Four introduces the disadvantages of peptide-based inhibitors. A discussion is given on the benefits of constraining inhibitors into the extended bioactive conformation known as a β-strand. Ring closing metathesis is utilised in the synthesis of the macrocyclic aldehyde 4.4, macrocyclic semicarbazone 4.15, the macrocyclic cyanohydrin 4.16, the macrocyclic α-ketotetrazole 4.18 and the macrocyclic azide 4.19. Chapter Five introduces enzyme inhibition studies. The BODIPY-casein fluorogenic assay used for establishing inhibitor potency against m-calpain and μ-calpain is validated. Assay protocols are also established and validated for cathepsin B, papain, pepsin and α- chymotrypsin. A discussion of the effect of solvent on enzyme activity is also included as part of this study. Chapter Six presents the assay results for all the inhibitors synthesised throughout this thesis and an extensive structure-activity relationship study between inhibitors is included. The alcohols 2.26 and 2.30 are unprecedented examples of non-covalent, potent, cathepsin B inhibitors (IC₅₀ = 0.075 μM selectivity 80-fold and 1.1 μM, selectivity 18-fold). The macrocyclic semicarbazone 4.15 is an unprecedented example of a potent macrocyclic cysteine protease inhibitor (m-calpain: IC₅₀ = 0.16 μM, selectivity 8-fold). The cyanohydrin 2.51 contains an unprecedented cysteine protease warhead and is a potent and selective inhibitor of papain (IC₅₀ = 0.030 μM, selectivity 3-fold). The O-protected cyanohydrin 2.61 is a potent and selective inhibitor of pepsin (IC₅₀ = 1.6 μM, selectivity 1.5-fold). The top ten warheads for potent, selective cathepsin B inhibition are: carboxylic acid, methyl ester, diazoketone, esterified cyanohydrin, α-bromomethyl ketone, α,β- unsaturated aldehyde, vinyl sulfones, α-bromomethyl-C₃-S,R-alcohol, alcohol and α,β- unsaturated ethyl ester. The selectivity of these warheads was between 5- and 130-fold for cathepsin B. The best inhibitors for cathepsin B were the α-bromomethyl ketone 3.26 (IC₅₀ = 0.075 μM, selectivity 16-fold), the α,β-unsaturated aldehyde 3.18 (IC₅₀ = 0.13 μM, selectivity 13-fold) and the esterified cyanohydrin 3.59 (IC₅₀ = 0.35 μM, selectivity 22- fold). Chapter Seven outlines the experimental details and synthesis of the compounds prepared in this thesis.
6

<b>COVALENT FRAGMENT SCREENING AND OPTIMIZATION IDENTIFIES NOVEL SCAFFOLDS FOR THE DEVELOPMENT OF INHIBITORS FOR DEUBIQUITINATING ENZYMES</b>

Ryan Dean Imhoff (18436656) 25 April 2024 (has links)
<p dir="ltr">Humans encode approximately 100 deubiquitinating enzymes (DUBs) which are categorized into seven distinct subfamilies. Each family and representative has a unique expression, function and binding topology to ubiquitin. In addition to human DUBs, parasites, bacteria, and viruses contain DUBs with unique structures and functions. One subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCH), has four structurally similar human members and two known members within the <i>Plasmodium falciparum</i> genome. Human UCHL1 and UCHL3 are genetically validated targets in oncology and <i>Plasmodium falciparum</i><i> </i>UCHL3 (PfUCHL3) is a prospective target for antimalarial drug development. Though these three UCH enzymes have potential as therapeutic targets, there is a significant lack of quality small molecule chemical probes to understand the underlying biology and function of the enzymes, pharmacologically validate the targets, and serve as leads for drug development in oncology and malaria.</p><p dir="ltr">The UCH enzymes are cysteine proteases, which our lab has leveraged to identify novel covalent small molecule inhibitors of each enzyme. The workflow for each hit identification and optimization campaign is similar. Covalent fragment screening of electrophilic small molecule libraries against the respective recombinant enzyme was performed to identify chemical space around each enzyme. Subsequent medicinal chemistry hit-to-lead optimization was undertaken to improve upon the moderately potent hit molecules to provide improved small molecule inhibitors for each enzyme. Inhibitor identification and optimization for UCHL1 is described in Chapter 2, revealing a novel scaffold and a cocrystal structure reveals a unique binding pose for UCHL1 inhibitors. These molecules were also characterized in breast cancer cells to validate UCHL1 as a therapeutic target in breast cancer. First-in-class covalent inhibitors of UCHL3 are described in Chapter 3. Medicinal chemistry optimization along with a cocrystal structure of the initial hit has revealed the molecular interactions of this novel inhibitory scaffold. PfUCHL3 inhibitor identification is described in Chapter 4. Characterization of these molecules against Plasmodium falciparum is described along with a comparison to a recently identified reversible PfUCHL3 inhibitor. Finally, conclusions and future directions toward the development of potent, drug-like inhibitors of each UCH enzyme is presented in Chapter 5.</p>
7

Conception, synthèse et évaluation biologique d'inhibiteurs fluorés non covalents du protéasome / Design, synthesis and biological test of fluorine non covalent protéasome inhibitors

Keita, Massaba 14 December 2012 (has links)
Le protéasome 26S est une macromolécule impliquée dans la dégradation de la majorité des protéines cellulaires. Parmi ces protéines, il y a les différents régulateurs de processus cruciaux tels que les protéines responsables de la progression du cycle cellulaire, de l’apoptose, des réponses inflammatoires, de l’activation de NF-B, de la présentation antigénique et de la différenciation cellulaire. Par conséquent, les inhibiteurs du protéasome sont des agents thérapeutiques dans des pathologies tels que le cancer, l’inflammation et les maladies auto-immunes. En effet, les inhibiteurs du protéasome sont connus pour induire la mort sélective des cellules cancéreuses tout en les rendant plus sensibles aux autres traitements anticancéreux existants (chimiothérapie, radiothérapie…). L’objectif de notre laboratoire est de développer des inhibiteurs non covalents du protéasome de structures peptidomimétiques fluorés ou non fluorés, et de montrer l’intérêt du fluor en chimie médicinale. Mon projet de thèse s’inscrit dans ce cadre. Dans un premier temps nous avons mis en évidence la grande diversité et la quantité des inhibiteurs du protéasome montrant ainsi l’importance de cette macromolécule comme cible dans le traitement du cancer. D’ailleurs, deux de ces inhibiteurs sont utilisés dans le traitement du myélome multiple et du lymphome du manteau et, plusieurs composés sont en études cliniques pour différents cancers. Nous avons aussi mis en évidence le bénéfice apporté par l’incorporation de groupement fluoré sur une molécule bioactive en particulier dans les structures peptidomimétiques. En revanche, ce rappel bibliographique a aussi montré que les peptidomimétiques contraints et fluorés sont peu décrits dans la littérature et le seul exemple à notre connaissance est l’analogue contraint et fluoré de la substance P contenant le motif (Z)-fluoroalcène.La deuxième partie de ces travaux de thèse s’est focalisée sur la conception, la synthèse et l’évaluation biologique d’inhibiteurs originaux du protéasome. Nous avons mis au point une synthèse facile et efficace de pseudopeptides possédant les motifs α et β-hydrazino acides et le motif β-hydrazino acide trifluorométhyle (schéma 1). Ces molécules inhibent de manière efficace le site CT-L du protéasome du lapin avec une IC50 de l’ordre du submicromolaire. Nous avons ainsi démontré que l’activité biologique est maintenue en remplaçant un α-amino acide par un scaffold α ou β-hydrazino acide. La pharmacomodulation effectuée autour de ces motifs nous a permis d’établir des relations structure-activité. Nous avons aussi mis au point un modèle de docking assez fiable qui va nous permettre de prédire le potentiel inhibiteur de nos futures molécules.Enfin, nous avons déterminé l’IC50 de nos molécules en utilisant la technique du FABS en RMN du 19F. Schéma1: voies d’accès aux peptidomimétiques contenant les motifs α et β-hydrazino acide et le motif β-hydrazino acide trifluorométhyl.Ces travaux de thèses ont été complétés par une méthodologie de synthèse portant sur le développement de nouveaux synthons contraints fluorés dans le but de les incorporer dans nos inhibiteurs de protéasome. Les cyclopropanes trifluorométhyles ont été obtenus en utilisant la réaction tandem de Michael, addition nucléophile suivie de cyclisation avec une excellente diastéréosélectivité pour certaines réactions. Les cyclopropanes obtenus ont été fonctionnalisés en amino acides ce qui faciliterait leur incorporation dans nos pseudopeptides. Les N-aminoaziridines fluorés ont été synthétisés à partir d’oléfines fluorés et de précurseurs de nitrène en présence de diacétate d’iodobenzène (PhI(OAc)2. L’incorporation de ces nouveaux scaffolds dans la structure de nos inhibiteurs de protéasome est en cours de réalisation dans le laboratoire. / The proteasome is a multicatalytic protease complex that is responsible for the ubiquitin-dependent turnover of cellular proteins. Proteasome substrates include misfolded or misassembled proteins as well as short-lived components of signaling cascades that regulate cell proliferation and survival pathways. Inhibition of the proteasome leads to an accumulation of substrate proteins and results in cell death. The proteasome consists of a 20S proteolytic core and two 19S regulatory caps that assemble with the core at either end to form a 26S complex. Clinical validation of the proteasome as a therapeutic target in oncology has been provided by bortezomib, a dipeptide boronic acid, which is approved for the treatment of patients with multiple myeloma1and mantle cell lymphoma. In the first part of my PhD, I designed (by the help of molecular modeling) and synthesized an original series of proteasome inhibitors introducing fluorinated peptidomimetics. Fluorine atom is able to favour hydrogen bond and to increase hydrophobicity and metabolic stability of the molecules. I also synthesized a series of non fluorinated peptidomimetics containing hydrazino acid moieties as proteasome inhibitors. Thereby, we designed and synthesized a library of 50 molecules that allowed us to establish a structure-activity relationship. The biological evaluation showed that half of these compounds have a micromolar IC50 (inhibitor concentration giving 50% inhibition). Then we decided to test the inhibitor activity of our synthesized molecules by 19F NMR using the FABS technique. So we developed a fluorine substrate for screening and determination of IC50 of our potential protéasome inhibitors. In order to increase the activity of our molecules and according to encouraging observation by molecular modelling, we decided to introduce constrained scaffolds such as trifluoromethyl cyclopropane or trifluoromethyl N-aminoaziridine scaffolds in our peptidomimetics structures. So we needed trifluoromethyl cyclopropane and trifluoromethyl N-aminoaziridine amino acids that could be easily incorporate in peptidic structure. To our knowledge there is no precedent on the synthesis of fluorinated N-aminoaziridines or trifluoromethyl cyclopropane β-amino acids which allowed us to develop a new synthesis methodology of these scaffolds. First, I synthesized different trifluoromethyl N-Aminoaziridine with several protective groups. The reaction of N-Aminoaziridine was performed in DCM with K2CO3 as base and (Diacetoxyiodo)benzene. For the synthesis of trifluomethyl cyclopropane β-amino acid, we used the cyclopropanation of Michael acceptors (tandem Michael Additions-Nucleophilic Cyclization (MA-NC)). Encouraged by this result and in order to develop different scaffolds trifluoromethyl cyclopropanes, we screened other nucleophiles. These scaffolds have been functionalized to amino acid in order to introduce it in peptidic structure.
8

Planejamento molecular, atividade tripanossomicida e anticancerígena de inibidores covalentes reversíveis de cisteíno proteases / Molecular design, trypanosomicidal and anticancer activity of reversible covalent inhibitors of cysteine proteases

Quilles Junior, José Carlos 20 March 2019 (has links)
A atividade de cisteíno proteases (CP) tem sido relacionada a diferentes patologias, como no caso da leishmaniose, doença de Chagas de alguns tipos de câncer. Devido a homologia entre as cisteíno proteases presentes em altos níveis nesses sistemas celulares, foi investigada aqui a importância dessas enzimas para o desenvolvimento e estabelecimento dessas doenças a partir da atividade biológica in vitro de novos inibidores reversíveis de cisteíno proteases. De maneira geral, as substâncias apresentaram relevante atividade inibitória de cisteíno proteases expressas pelos diferentes sistemas celulares, com máximo de inibição de 42% para o Neq0554 em relação à atividade de CP expressas por Leishmania spp. e 76% em relação a atividade de CP expressas por células de câncer de pâncreas. Diferentes níveis de atividade biológica foram observados entre os sistemas celulares, porém todos apresentaram supressão em relação aos parâmetros citostáticos após a inibição da atividade de CP. Quando testados em Leishmania spp. o crescimento celular foi suprimido em pelo menos 67%, com máximo de inibição de 95% para o Neq0551 a 10 &mu;M. Da mesma maneira, em células de câncer de pâncreas, alterações no ciclo celular e supressão dos processos de migração e formação de colônias foram os resultados mais evidentes, comretenção de 50% da capacidade de formação de colônias das células Mia-Paca2 pelo Neq0554 a 10 &mu;M. Já em relação aos protozoários da capa Y de Trypanosoma cruzi os inibidores testados apresentaram interessante seletividade contra os parasitos, em relação à célula hospedeira LLC-MK2, além de promoverem a supressão de cerca de 80% do processo de invasão celular in vitro quando a célula hospedeira foi previamente tratada com 10 &mu;M do inibidor Neq0662 por 2 h antes do processo de infecção. Por fim, a encapsulação do Neq0554 em apoferritina promoveu um incremento na atividade anticancerígena para células de câncer de pâncreas, com IC50 de 79 &mu;M contra &gt; 200 &mu;M em relação às células de fibroblasto, aumentando sua seletividade. De maneira geral, os resultados corroboram a hipótese de a inibição de cisteíno proteases nos sistemas celulares é eficiente para promover efeitos citostáticos, podendo ser utilizada com controle e supressão do desenvolvimento das patologias. Além disso, a atividade de CP nas células de protozoários e câncer de pâncreas apresentou perfil semelhante de ação, no qual inibidores de CP não promoveram a morte em nível significativo das células, mas ressaltaram os efeitos citostáticos em relação ao crescimento celular. / Cysteine proteases (CP) activity has been related to different pathologies, such as leishmaniasis, Chagas disease and some types of cancer. Due to the homology between cysteine proteases expressed by these cellular systems, it was investigated here the importance of these enzymes for the development and establishment of these diseases based on the in vitro biological activity of novel reversible cysteine protease inhibitors. In general, the inhibitor showed a significant inhibitory activity of cysteine proteases expressed by the different cellular systems, with a maximum inhibition of 42% for Neq0554 concerning the CP activity expressed by Leishmania spp. and 76% to CP activity expressed by pancreatic cancer cells. Different profiles of biological activity were observed between the cellular systems, but all substances had significant CP activity suppression, in cytostatic levels after the inhibition of CPA. When the inhibitors were tested against Leishmania spp., the cell growth was suppressed by at least 67%, with maximum inhibition of 95% for Neq0551 at 10 &mu;M. Similarly in pancreatic cancer cells, changes in the cell cycle profile were the most evident results, as well as the suppression of migration and colony formation ability, with 50% retention of the colony development of Mia-Paca2 cells by Neq0554 at 10 &mu;M. In contrast, to protozoa from Trypanosoma cruzi Y strain, the inhibitors tested showed an interesting selectivity against the parasites concerning the host cell LLC-MK2, also promoting the in vitro cell invasion suppression in about 80% when the host cell was pre-treated with Neq0662 10 &mu;M for 2 h. Finally, the encapsulation of Neq0554 promoted an increase in its anticancer activity against pancreatic cancer cells, with IC50 of 79 &mu;M alongside &gt; 200 &mu;M to fibroblast cells, besides increasing its selectivity. In general, the results corroborate the hypothesis that the inhibition of cysteine proteases in the cellular systems is efficient to promote cytostatic effects, being an interesting tool to be used as control and development suppression of some pathologies. Also, CP activity in protozoa cells and pancreatic cancer showed a similar profile of action, in which cysteine protease inhibitors did not promote death at a significant level for the cells, but emphasized cytostatic effects about cell growth.
9

Design, synthesis and biological evaluation of TG2 transglutaminase inhibitors / Conception, synthèse et évaluation biologique des inhibiteurs de la transglutaminase TG2

Fidalgo Lopez, Javier 23 November 2016 (has links)
La transglutaminase tissulaire (TG2) est une enzyme de la famille des transglutaminases (EC 2.3.2.13) qui est exprimée de manière ubiquitaire chez les mammifères. Cette enzyme catalyse la formation d'une liaison amide intra- ou intermoléculaire entre un résidu glutamine et un résidu lysine. Ce processus biologique conduit à la modification post-traductionnelle des protéines. Un nombre croissant de publications associe la surexpression de cette enzyme et la déréglementation de son activité, avec un certain nombre de pathologiques humaines telles que les maladies neurodégénératives (maladie d’Alzheimer, maladie de Huntington, maladie de Parkinson), la fibrose tissulaire, certains cancers et la maladie cœliaque. Le développement d'inhibiteurs puissants et sélectifs de la TG2 est primordial pour identifier soit des outils pharmacologiques pour comprendre les processus biologiques dépendant de cette enzyme ou soit des candidats médicaments pour traiter les pathologies liées à la surexpression de la TG2. La majorité des composés inhibiteurs synthétisés jusqu'à présent agissent en bloquant de manière irréversible la réaction de transamidification de la TG2 en ciblant spécifiquement la cystéine 277 présente dans le site actif de la TG2.L’objectif de ce travail a été d’identifier et de sélectionner des molécules de faible poids moléculaire inhibant de façon sélective et puissante l’activité de transamidification de la TG2. Nous présenterons l’optimisation de deux séries originales de composés (synthèse, études de relation de structure-activité) comportant un noyau aromatique central de type naphtalénique ou indolique et une fonction acrylamide comme accepteur de Michael pour piéger la fonction thiol de la cystéine 277. Un certain nombre de composés synthétisés montre une inhibition nanomolaire de la TG2 (IC50 = 1.7-6 nM) avec un excellent profil de sélectivité vis-à-vis de TG1, TG6 et FXIIIa (IC50 > 10 µM). Ces inhibiteurs inhibent efficacement la TG2 dans des extraits de tissus et de cellules. Aucune toxicité apparente n’a été observée pour des concentrations inférieures à 10 µM d’inhibiteur sur les lignées vSMCs et SH-SY5Y. Les valeurs de KI, kinact et kinact/KI ont été également déterminés sur deux inhibiteurs sélectionnés (23b et 78f) pour leurs activités biologiques. La formation d’une liaison covalente entre la cystéine 277 de la TG2 et ces deux inhibiteurs a été prouvée par digestion trypsique suivie d’une analyse LC-MS/MS / Tissue transglutaminase (TG2) is a ubiquitously expressed enzyme of the mammalian transglutaminase (TG) family which catalyzes the formation of an intra- or inter-molecular isopeptide bond between a glutamine and a lysine, leading to the post-translational modification of proteins. An increasing number of literature has associated the over-expression of this enzyme, and the deregulation of its activity, with a number of human physio-pathological states like neurodegenerative disorders (Alzheimer’s disease, Huntington’s disease, Parkinson’s disease), tissue fibrosis, certain cancers, and celiac disease. The development of potent and selective TG2 inhibitors has become primordial to reach either a pharmacological probe, to understand the biological processes that depend on this enzyme, or a drug candidate, to treat the pathologies related with its overexpression. The majority of the inhibitory compounds synthesized so far act by irreversibly blocking the transamidation reaction of TG2. These TG2 inhibitors specifically target the cysteine 277 present in the TG2 active site. The aim of this work was the identification and selection of new potent and selective small molecules to inhibit the TG2 transamidation activity. We present the optimization of two new series of compounds (synthesis, structure-activity relationship studies) bearing naphthalene or indole aromatic rings as the central backbone structure. Both series present an acrylamide group as the Michael acceptor in order to react with the thiol group of cysteine 277. Several of the synthesized compounds showed a nanomolar inhibition over TG2 (1.7-6 nM) with an excellent selectivity profile over TG1, TG6 and FXIIIa (IC50 > 10 µM). These inhibitors showed high specificity on inhibiting TG2 in tissue and cell extracts. No apparent toxicity up to 10 µM was observed in vSMCs and SH-SY5Y cell lines. Their KI, kinact et kinact/KI were also determined on two selected inhibitors (23b and 78f) for their biological activities. The formation of a covalent bond between the cysteine 277 of TG2 and these two inhibitors was proven by tryptic digestion followed by LC-MS/MS analysis

Page generated in 0.1047 seconds