• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of orphan cytochrome P450s from Mycobacterium tuberculosis H37Rv

Nisbar, Nur Dayana Binti January 2018 (has links)
Tuberculosis is a disease that kills more people every year than any other infectious disease and is caused by the human pathogen, Mycobacterium tuberculosis (Mtb). This disease can be treated by a standard six month course of four antimicrobial drugs that have been in use since the 1960s. However, the rise of multi-drug resistant and extensively drug-resistant strains of TB has complicated the efforts to eradicate the disease. Therefore, there is a critical need for the development of new anti-TB drugs with a novel mechanism of action that can speed up treatment duration and help avoid resistance. The discovery of twenty genes encoding cytochrome P450 enzymes in the Mtb H37Rv genome sequence has pointed to the significance of these enzymes in the physiology and pathogenicity of this bacterium. Consequently, the characterisation of these Mtb P450 enzymes may define their physiological roles of which can be a novel anti-tubercular drug target. To date, the characterisations of selected Mtb P450 enzymes have highlighted their diverse and unexpected roles in the metabolism of cholesterol and lipids and the production of secondary metabolites. Biochemical and biophysical studies of these enzymes provided knowledge of their active site properties that may be exploited for drug discovery. Therefore, with the prospect of defining novel functions and identifying novel drug targets, characterisations of the remaining orphan Mtb P450s is of interest. M. tuberculosis CYP141A1 and CYP143A1 are orphan enzymes with unknown physiological function in Mtb which is characterised in this study through use of various spectroscopic and biophysical techniques. Interestingly, CYP141A1 can be expressed in form of which 54 amino acids (Del54CYP141A1) are deleted from the N-terminus. Although Del54CYP141A1 still retain spectroscopic characteristics, this form of P450 cannot be crystallized. Optimisation of full-length CYP141A1 buffer composition resulted to the formation of reproducible crystals and determination of CYP141A1 structure. Spectroscopic and structural characterisations presented in this thesis revealed many characteristics of CYP141A1 and CYP143A1 are comparable to previous Mtb P450s reported to date. CYP141A1 and CYP143A1 active site consist of b-type heme iron ligated by cysteine residue and a water molecule at its proximal and distal face, respectively. Both enzymes bind tightly to azole antifungal drugs highlighting their potential as a drug target. In addition, fragment-based screening applied to CYP141A1 and CYP143A1 provided the starting point for the development of potent, isoform-specific inhibitors for both orphan Mtb P450 enzymes. The first crystal structure of CYP141A1 and identification of new fragment binders of CYP141A1 and CYP143A1 are presented in this thesis. Overall, this research remains significant in providing new knowledge on the spectroscopic and structural properties of the M. tuberculosis P450s CYP141A1 and CYP143A1.
2

Fragment Based Drug Discovery with Surface Plasmon Resonance Technology

Nordström, Helena January 2013 (has links)
Fragment based drug discovery (FBDD) has been applied to two protease drug targets, MMP-12 and HIV-1 protease. The primary screening and characterization of hit fragments were performed with surface plasmon resonance -technology. Further evaluation of the interaction was done by inhibition studies and in one case with X-ray crystallography. The focus of the two projects was different. Many MMP inhibitors contain a strong zinc chelating group, hydroxamate, interacting with the catalytic zinc atom. This strategy may be the cause for the low specificity of MMP inhibitors. Using FBDD we found a fragment with an unusual strong affinity for MMP-12. An inhibition assay confirmed that it was an inhibitor but indicated a stoichiometry of 2:1. Crystallography data revealed that an adduct of the fragment was bound in the active site, with interactions both with the catalytic zinc and the S1’ pocket. This may present a new scaffold for MMP-12 inhibitors. For HIV-1 protease the focus was on identifying inhibitors not sensitive to current resistance mutations. A fragment library for screening with SPR-technology was designed and used for screening against wild type enzyme and three variants with resistance mutations. Many of the hits were promiscuous but a number of fragments with possible allosteric inhibition mechanism were identified. The temperature dependency of the dissociation rate and reported resistance mutations was studied with thermodynamics. A good, but not perfect correlation was found between resistance and both the dissociation data and the free energy for dissociation compared to data from wild type enzyme. However, the type of mutation also influenced the results. The flap mutation G48V displayed thermodynamic profiles not completely correlating with resistance. It was found that dissociation rate and thermodynamics may complement each other when studying resistance, but only one of them may not be enough.
3

Fragment synthesis : pharmacophore and diversity oriented approaches

North, Andrew James Peter January 2019 (has links)
This thesis explores two approaches to fragment-based drug discovery. First, protein target CK2 was chosen due to its importance in the cancer phenotype. A literature fragment, NMR154L, proved to be a promising compound for fragment development, due to its binding at the interface site of the protein rather than the highly conserved ATP pocket. Analogues were synthesised of this fragment leading to a candidate with a better IC50. Additionally, computer modelling of the interface site suggested that a series of spirocyclic compounds would inhibit this protein. These were synthesised and tested in vitro. Results from these tests were analysed and informed the synthesis of new inhibitors with the aid of crystal structures and computer modelling. Secondly, to address the lack of spirocyclic scaffolds in fragment screening libraries a number of diversity-orientated synthetic campaigns were undertaken. The first of these utilised glycine as starting material. Two terminal alkenes were installed. The alkenes were linked and the amino and acidic residues cyclised. This allowed for the formation of a diverse range of spirocyclic scaffolds from this one starting material. Having established chemistry for linking amino and acidic residues a campaign with dehydroalanine was under taken. This would allow for the installation of the second ring by pericyclic chemistry as well as using chemistry previously established. This pericyclic chemistry was also applied to synthesising spirocycles from rings with exocyclic double bonds. These being readily installed from Wittig chemistry, this allowed utilisation of starting materials which contained a cyclic ketone. Of these azetidinone was a good candidate due to the fact it was a commercially available building block and allowed access to spirocycles containing a 4-membered ring; an underrepresented ring size. Finally, computation analysis was carried out on the library to assess it diversity and any potential biological targets which these fragments may inhibit.
4

Studies on Application of Silyl Groups in Ring-Closing Metathesis Reactions and Fragment-Based Probe Discovery

Wang, Yikai 19 December 2012 (has links)
In efforts to search for tool compounds that are capable of probing normal and disease-associated biological processes, both quality and identity of the screening collection are very important. Towards this goal, diversity-oriented synthesis (DOS) has been explored for a decade, which aims to populate the chemical space with diverse sets of small molecules distinct from the traditional ones obtained via combinatorial chemistry. In the practice of DOS, macrocyclic ring-closing metathesis (RCM) reactions have been widely used. However, the prediction and control of stereoselectivity of the reaction is often challenging; chemical transformation of the olefin moiety within the product is in general limited. Chapter I of this thesis describes a methodology that addresses both problems simultaneously and thus extends the utility of the RCM reactions. By installing a silyl group at the internal position of one of the olefin termini, the RCM reaction could proceed with high stereoselectivity to afford the (E)-alkenylsiloxane regardless of the intrinsic selectivity of the substrate. The resulting alkenylsiloxane can be transformed to a variety of functionalities in a regiospecific fashion. The conversion of the (E)-alkenylsiloxanes to alkenyl bromides could proceed with inversion of stereochemistry for some substrates allowing the selective access of both the E- and Z-trisubstituted macrocyclic alkenes. It was also found that the silyl group could trap the desired mono-cyclized product by suppressing nonproductive pathways. Chapter II of this thesis describes the application of the concept of DOS in the area of fragment-based drug discovery. Most fragment libraries used to date have been limited to aromatic heterocycles with an underrepresentation of chiral, enantiopure, \(sp^3\)-rich compounds. In order to create a more diverse fragment collection, the build/couple/pair algorithm was adopted. Starting from proline derivatives, a series of bicyclic compounds were obtained with complete sets of stereoisomers and high \(sp^3\) ratio. Efforts are also described toward the generation of diverse fragments using methodology described in Chapter I. The glycogen synthase kinase \((GSK3\beta)\) was selected as the proof-of-concept target for screening the DOS fragments. / Chemistry and Chemical Biology
5

Small molecule inhibition of immunoregulatory protein-protein interactions

Sheehy, Daniel Francis 22 September 2023 (has links)
Selective molecular recognition between proteins is a fundamental event in biological processes that governs cellular growth, function, survival, and differentiation. The immune system, for example, is a complex network of cellular processes regulated by protein-protein interactions (PPIs) between cells, receptors, and secreted molecules. Generating and maintaining an appropriate immune response and regulation requires coordination across many cell types and components, while dysregulation of these interactions can lead to disease. A major obstacle in small molecule therapy development towards these PPIs is their restriction to small protein-protein interfaces and a well-defined hydrophobic pocket. Most PPIs have large contact surface areas and lack traditional binding pockets making them historically challenging for the development of potent small-molecule modulators. To address this limitation, we utilized two binding-based approaches, a unique peptidomimetic fragment library and high-throughput small-molecule microarrays to design and discover molecules that target three important immunoregulatory PPIs: the DQ8-insulin complex, the KEAP1-Nrf2 complex, and the IL-4/IL-4R receptor complex. Many autoimmune diseases involve the ternary PPI complex between immunogenic peptides presented to T cell receptors through the major histocompatibility complex (MHC). Inhibiting this interaction may provide a therapeutic approach for delaying or preventing disease. To target type 1 diabetes, we developed a unique library consisting of 125 fragment-sized molecules that mimic glutamic acid and tyrosine residues from the immunogenic insulin B:9-23 peptide responsible for CD4+ T cell activation. Screening of our library after generation of the MHC class II protein responsible for insulin B:9-23 presentation, DQ8, has resulted in identification of 15 lead fragment compounds to date. Application of our fragment library towards pharmaceutically validated target for inflammation and neurogenerative diseases, the Kelch like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), resulted in a 30% hit rate. These are promising results for the further development of selective compounds to inhibit these interactions. For treating inflammatory diseases, such as asthma or cancer, we report the identification of a first-in-class small molecule inhibitor to the cytokine Interleukin-4 (IL-4). The PPI between IL-4 and its receptor complex (IL-4Rα) contains no conventional binding pockets and binding is driven through clusters of complementary residues. Through the combination of small-molecule microarrays and cell-based assays we identified the lead compound, Nico-52, with micromolar inhibitory potency and micromolar affinity. A library of 60 analogs of Nico-52 was synthesized and preliminary structure activity relationships suggest amenability of the p-fluorophenyl substituent and importance of the diol substituent to retain binding potency. These studies resulted in development of a more potent inhibitor to IL-4 with a p-aniline substituent, which could be developed into a targeting ligand to deliver additional therapeutic payloads to an IL-4 enriched microenvironment. In summary, we have developed a peptidomimetic small molecule fragment library as a toolkit for screening against challenging PPI targets with applications towards type 1 diabetes and developed a first-in-class small molecule inhibitor towards IL-4 with applications towards inflammatory diseases. / 2025-09-21T00:00:00Z
6

Progress of Weak Affinity Chromatography as a Tool in Drug Development

Meiby, Elinor January 2013 (has links)
Weak Affinity Chromatography (WAC) is a technology that was developed to analyse weak (KD > 10-5 M) although selective interactions between biomolecules. The focus of this thesis was to develop this method for various applications in the drug development process.   Fragment Based Drug Discovery is a new approach in finding new small molecular drugs. Here, relatively small libraries (a few hundreds to a few thousands of compounds) of fragments (150 – 300 Da) are screened against the target. Fragment hits are then developed into lead molecules by linking, growing or merging fragments binding to different locations of the protein’s active site. However, due to the weakly binding nature of fragments, methods that are able to detect very weak binding events are needed. In this thesis, WAC is presented as a new robust and highly reproducible technology for fragment screening. The technology is demonstrated against a number of different protein targets – proteases, kinases, chaperones and protein-protein interaction (PPI) targets. Comparison of data from fragment screening of 111 fragments by WAC and other more established technologies for fragment screening, such as surface plasmon resonance (SPR) and nuclear magnetic resonance (NMR), validates WAC as a screening technology. It also points at the importance of performing fragment screening by multiple methods as they complement each other.   Other applications of WAC in drug development are also presented. The method can be used for chiral separations of racemic mixtures during fragment screening, which enables affinity measurements of individual enantiomers binding to the target of interest. Further, analysis of crude reaction mixtures is shown. By these procedures, the affinity of the product can be assessed directly after synthesis without any time-consuming purification steps. In addition, a high performance liquid chromatography (HPLC) system for highly efficient drug partition studies was developed by stable immobilization of lipid bilayer disks – lipodisks – on a high performance silica support material. These lipodisks are recognized model membranes for drug partition studies. A WAC system with incorporated membrane proteins into immobilized lipodisks has also been produced and evaluated with the ultimate objective to study affinity interactions between ligands and membrane proteins. / Ett läkemedel utövar sin funktion genom att påverka aktiviteten hos ett protein i kroppen då det binder till dess aktiva säte. Förändringen i aktivitet leder till fysiologiska förändringar i kroppen beroende på vilken funktion proteinet har. Med läkemedelsmolekyl avses här en liten organisk molekyl. Fragment-baserad läkemedelsutveckling är en ny metod for att ta fram nya läkemedel. Metoden fungerar genom att man bygger läkemedelsmolekyler utifrån mindre fragment som binder till målproteinet. Fragmenten hittar man genom att screena hela bibliotek av olika fragment mot samma målprotein för att urskilja de som binder till proteinets aktiva säte. Fördelen med den här metoden är bl. a. att med mindre molekyler som utgångspunkt kan en större del av antalet möjliga kombinationer av atomer representeras med ett mindre antal fragment än för större molekyler. Normalt utgörs ett fragmentbibliotek enbart av några hundra till några tusen substanser. Eftersom fragmenten är små har de få interaktionspunker och binder relativt svagt. De svaga bindningarna är svåra att se och mycket känsliga metoder behövs.   Svagaffinitetskromatografi är en vätskekromatografisk metod som utvecklades för att studera svaga men mycket selektiva bindningar mellan biomolekyler. Den här avhandlingen syftar till att utveckla metoden för olika användningsområden inom läkemedelsutveckling, främst som en ny metod för fragment-screening. Här mäter man interaktionen mellan ett protein och ett fragment. Proteinet kopplas till ett material som sedan packas i en kolonn i formen av en cylinder. När provet pumpas igenom kolonnen kommer de analyter med affinitet till proteinets aktiva säte att fördröjas på kolonnen i relation till hur starkt de interagerar med målproteinet.   I den här avhandlingen presenteras fragment-screening med svagaffinitetskromatografi gentemot ett antal olika typer av målproteiner. Resultatet överensstämmer väl med andra metoder för fragment-screening. Analys av reaktionsblandningar med svagaffinitetskromatografi demonstreras också. Därmed kan bindningen mellan en produkt i en reaktionsblandning och ett målprotein mätas direkt utan föregående uppreningssteg av reaktionsblandningen. Lipodiskar är små diskformade modellmembran som kan användas för att bl. a. mäta hur effektivt läkemedlet tas upp i kroppen vid behandling. Ett system med immobiliserade lipodiskar i en kolonn utvecklades med det framtida målet att kunna arbeta med membranproteiner med svagaffinitetskromatografi.   Detta arbete utgör en del i att utveckla svagaffinitetskromatografi som en lättillgänglig och relativt billig metod för användning inom industrin och akademin för läkemedelsutveckling.
7

Biochemical and drug targeting studies of Mycobacterium tuberculosis cholesterol oxidase P450 enzymes

Amadi, Cecilia Nwadiuto January 2016 (has links)
Mycobacterium tuberculosis (Mtb), a deadly pathogen, has scourged mankind for many centuries and has remained a major threat to global world health. Tuberculosis, the disease caused by this bacterium, is a major cause of death in developing nations and there is potential for its re-emergence in developed countries. An alarming rise in cases of multidrug-resistant and extremely-drug resistant tuberculosis (MDR-TB and XDR-TB) that do not respond to the customary first-line antibiotics necessitates the urgent need for development of new anti-TB drugs. Mtb becomes engulfed in human macrophages post infection of the host, but persists in the harsh environment of the human lungs by utilization of host cholesterol as a carbon source. The P450s CYP125A1, CYP142A1 and CYP124A1 are responsible for catalysing the side-chain degradation of cholesterol, which is critical for cholesterol to be used in the Mtb β-oxidation pathway for energy production. This PhD thesis focuses on understanding the structure/mechanism of the Mtb cholesterol 27-oxidases with the aim of facilitating the development of novel inhibitors of these P450s, which are crucial for Mtb to infect the host and to sustain infection. CYP142A1 and CYP124A1 were purified through three chromatographic steps with contaminating proteins successfully removed to give highly pure forms of these enzymes following the final purification step. Spectrophotometric titrations indicate that CYP142A1 and CYP124A1 bind tightly to cholesterol and cholestenone (and also to branched-chain methyl lipids for CYP124A1), highlighting their physiological roles in sterol and fatty acid metabolism, respectively. Binding analyses with a range of azole antibiotics revealed tight binding to bifonazole, clotrimazole, miconazole and econazole, and weak binding to fluconazole. Studies with compounds from a fragment screening library revealed weak binding to fragment hits for the cholesterol oxidases, but much tighter binding to these enzymes was found for ‘elaborated’ hits from a previous fragment screen on the Mtb cyclodipeptide oxidase CYP121A1, indicative of improved ligand potency achieved via ‘fragment merging’ strategies, and of structural similarities between these diverse Mtb P450s. Light scattering data indicate that CYP142A1 exists in dimeric form in solution, but becomes monomeric when treated with DTT; while CYP124A1 is completely monomeric. Crystal structures of CYP142A1 and CYP124A1 in complex with cholestenone, econazole and fragment library hits were determined. CYP142A1 crystal structures with econazole and fragment hits revealed heme coordination via the heterocyclic nitrogen in an azole group, and provide important data towards design of superior inhibitor drugs. The binding of cholestenone within the active site channels of CYP124A1 and CYP142A1 revealed an alignment favourable for C27 hydroxylation of the cholestenone side chain, which supports the physiological roles of CYP142A1 and CYP124A1 (as well as CYP125A1) in host cholesterol catabolism.
8

<b>COVALENT FRAGMENT SCREENING AND OPTIMIZATION IDENTIFIES NOVEL SCAFFOLDS FOR THE DEVELOPMENT OF INHIBITORS FOR DEUBIQUITINATING ENZYMES</b>

Ryan Dean Imhoff (18436656) 25 April 2024 (has links)
<p dir="ltr">Humans encode approximately 100 deubiquitinating enzymes (DUBs) which are categorized into seven distinct subfamilies. Each family and representative has a unique expression, function and binding topology to ubiquitin. In addition to human DUBs, parasites, bacteria, and viruses contain DUBs with unique structures and functions. One subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCH), has four structurally similar human members and two known members within the <i>Plasmodium falciparum</i> genome. Human UCHL1 and UCHL3 are genetically validated targets in oncology and <i>Plasmodium falciparum</i><i> </i>UCHL3 (PfUCHL3) is a prospective target for antimalarial drug development. Though these three UCH enzymes have potential as therapeutic targets, there is a significant lack of quality small molecule chemical probes to understand the underlying biology and function of the enzymes, pharmacologically validate the targets, and serve as leads for drug development in oncology and malaria.</p><p dir="ltr">The UCH enzymes are cysteine proteases, which our lab has leveraged to identify novel covalent small molecule inhibitors of each enzyme. The workflow for each hit identification and optimization campaign is similar. Covalent fragment screening of electrophilic small molecule libraries against the respective recombinant enzyme was performed to identify chemical space around each enzyme. Subsequent medicinal chemistry hit-to-lead optimization was undertaken to improve upon the moderately potent hit molecules to provide improved small molecule inhibitors for each enzyme. Inhibitor identification and optimization for UCHL1 is described in Chapter 2, revealing a novel scaffold and a cocrystal structure reveals a unique binding pose for UCHL1 inhibitors. These molecules were also characterized in breast cancer cells to validate UCHL1 as a therapeutic target in breast cancer. First-in-class covalent inhibitors of UCHL3 are described in Chapter 3. Medicinal chemistry optimization along with a cocrystal structure of the initial hit has revealed the molecular interactions of this novel inhibitory scaffold. PfUCHL3 inhibitor identification is described in Chapter 4. Characterization of these molecules against Plasmodium falciparum is described along with a comparison to a recently identified reversible PfUCHL3 inhibitor. Finally, conclusions and future directions toward the development of potent, drug-like inhibitors of each UCH enzyme is presented in Chapter 5.</p>
9

Targeting Mycobacterium abscessus infection in cystic fibrosis : a structure-guided fragment-based drug discovery approach

Thomas, Sherine Elizabeth January 2019 (has links)
Recent years have seen the emergence of Mycobacterium abscessus, a highly drug-resistant non-tuberculous mycobacterium, which causes life-threatening infections in people with chronic lung conditions like cystic fibrosis. This opportunistic pathogen is refractory to treatment with standard anti-tuberculosis drugs and most currently available antibiotics, often resulting in accelerated lung function decline. This project aims to use a structure-guided fragment-based drug discovery approach to develop effective drugs to treat M. abscessus infections. During the early stage of the project, three bacterial targets were identified, based on analysis of the structural proteome of M. abscessus and prior knowledge of M. tuberculosis drug targets, followed by gene knockout studies to determine target essentiality for bacterial survival. The three targets from M. abscessus were then cloned, expressed and purified and suitable crystallization conditions were identified leading to the determination of high resolution structures. Further, a large number of starting fragments that hit the three target proteins were determined, using a combination of biophysical screening methods and by defining crystal structures of the complexes. For target 3, PPAT (Phosphopantethiene adenylyl transferase), a chemical linking of two fragments followed by iterative fragment elaboration was carried out to obtain two compounds with low micromolar affinities in vitro. However, these compounds afforded only low inhibitory activity on M. abscessus whole cell. All starting fragments of target 2, PurC (SAICAR synthase), occupied the ATP indole pocket. Efforts were then made to identify further fragment hits by screening diverse libraries. Sub-structure searches of these initial fragment hits and virtual screening helped to identify potential analogues amenable to further medicinal chemistry intervention. While fragment hits of target 1, TrmD (tRNA-(N1G37) methyl transferase), were prioritized, whereby two chemical series were developed using fragment growing and merging approaches. Iterative fragment elaboration cycle, aided by crystallography, biophysical and biochemical assays led to the development of several potential lead candidates having low nano-molar range of in vitro affinities. Two such compounds afforded moderate inhibition of M. abscessus and stronger inhibition of M. tuberculosis and S. aureus cultures. Further chemical modifications of these compounds as well as others are now being done, to optimize cellular and in vivo activities, to be ultimately presented as early stage clinical candidates.
10

Introducing weak affinity chromatography to drug discovery with focus on fragment screening

Duong-Thi, Minh-Dao January 2013 (has links)
Fragment-based drug discovery is an emerging process that has gained popularity in recent years. The process starts from small molecules called fragments. One major step in fragment-based drug discovery is fragment screening, which is a strategy to screen libraries of small molecules to find hits. The strategy in theory is more efficient than traditional high-throughput screening that works with larger molecules. As fragments intrinsically possess weak affinity to a target, detection techniques of high sensitivity to affinity are required for fragment screening. Furthermore, the use of different screening methods is necessary to improve the likelihood of success in finding suitable fragments. Since no single method can work for all types of screening, there is a demand for new techniques. The aim of this thesis is to introduce weak affinity chromatography (WAC) as a novel technique for fragment screening. WAC is, as the name suggests, an affinity-based liquid chromatographic technique that separates compounds based on their different weak affinities to an immobilized target. The higher affinity a compound has towards the target, the longer it remains in the separation unit, and this will be expressed as a longer retention time. The affinity measure and ranking of affinity can be achieved by processing the obtained retention times of analyzed compounds. In this thesis, WAC is studied for fragment screening on two platforms. The first system comprised a 24-channel affinity cartridge that works in cooperation with an eight-needle autosampler and 24 parallel UV detector units. The second system was a standard analytical LC-MS platform that is connected to an affinity column, generally called WAC-MS or affinity LC-MS. The evaluation criteria in studying WAC for fragment screening using these platforms were throughput, affinity determination and ranking, specificity, operational platform characteristics and consumption of target protein and sample. The model target proteins were bovine serum albumin for the first platform, thrombin and trypsin for the latter. Screened fragments were either small molecule drugs, a thrombin-directed collection of compounds, or a general-purpose fragment library. To evaluate WAC for early stages of fragment elaboration, diastereomeric mixtures from a thrombin-directed synthesis project were screened. Although both analytical platforms can be used for fragment screening, WAC-MS shows more useful features due to easy access to the screening platform, higher throughput and ability to analyze mixtures. Affinity data from WAC are in good correlation with IC50 values from enzyme assay experiments. The possibility to distinguish specific from non- specific interactions plays an important role in the interpretation of WAC results. In this thesis, this was achieved by inhibiting the active site of the target protein to measure off-site interactions. WAC proves to be a sensitive, robust, moderate in cost and easy to access technique for fragment screening, and can also be useful in the early stages of fragment evolution. In conclusion, this thesis has demonstrated the proof of principle of using WAC as a new tool to monitor affinity and to select hits in fragment-based drug discovery. This thesis has indicated the primary possibilities, advantages as well as the limitations of WAC in fragment screening procedures.  In the future, WAC should be evaluated on other targets and fragment libraries in order to realize more fully the potential of the technology.

Page generated in 0.1329 seconds