• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fragment Based Drug Discovery with Surface Plasmon Resonance Technology

Nordström, Helena January 2013 (has links)
Fragment based drug discovery (FBDD) has been applied to two protease drug targets, MMP-12 and HIV-1 protease. The primary screening and characterization of hit fragments were performed with surface plasmon resonance -technology. Further evaluation of the interaction was done by inhibition studies and in one case with X-ray crystallography. The focus of the two projects was different. Many MMP inhibitors contain a strong zinc chelating group, hydroxamate, interacting with the catalytic zinc atom. This strategy may be the cause for the low specificity of MMP inhibitors. Using FBDD we found a fragment with an unusual strong affinity for MMP-12. An inhibition assay confirmed that it was an inhibitor but indicated a stoichiometry of 2:1. Crystallography data revealed that an adduct of the fragment was bound in the active site, with interactions both with the catalytic zinc and the S1’ pocket. This may present a new scaffold for MMP-12 inhibitors. For HIV-1 protease the focus was on identifying inhibitors not sensitive to current resistance mutations. A fragment library for screening with SPR-technology was designed and used for screening against wild type enzyme and three variants with resistance mutations. Many of the hits were promiscuous but a number of fragments with possible allosteric inhibition mechanism were identified. The temperature dependency of the dissociation rate and reported resistance mutations was studied with thermodynamics. A good, but not perfect correlation was found between resistance and both the dissociation data and the free energy for dissociation compared to data from wild type enzyme. However, the type of mutation also influenced the results. The flap mutation G48V displayed thermodynamic profiles not completely correlating with resistance. It was found that dissociation rate and thermodynamics may complement each other when studying resistance, but only one of them may not be enough.
2

Interaction Studies of Secreted Aspartic Proteases (Saps) from Candida albicans : Application for Drug Discovery

Backman, Dan January 2005 (has links)
This thesis is focused on enzymatic studies of the secreted aspartic proteases (Saps) from Candida albicans as a tool for discovery of anti-candida drugs. C. albicans causes infections in a number of different locations, which differ widely in the protein substrates available and pH. Since C. albicans needs Saps during virulent growth, these enzymes are good targets for drug development. In order to investigate the catalytic characteristics of Saps and their inhibitor affinities, substrate-based kinetic assays were developed. Due to the low sensitivity of these assays, especially at the sub-optimal pH required to mimic the different locations of infections, these assays were not satisfactory. Therefore, a biosensor assay was developed whereby, it was possible to study interaction between Saps and inhibitors without the need to optimise catalytic efficacy. Furthermore, the biosensor assay allowed determination of affinity, as well as the individual association and dissociation rates for inhibitor interactions. Knowledge about substrate specificity, Sap subsite adaptivity, and the pH dependencies of catalytic efficacy has been accumulated. Also, screening of transition-state analogue inhibitors designed for HIV-1 protease has revealed inhibitors with affinity for Saps. Furthermore, the kinetics and pH dependencies of their interaction with Saps have been investigated. One of these inhibitors, BEA-440, displayed a complex interaction with Saps, indicating a conformational change upon binding and a very slow dissociation rate. A time dependent interaction was further supported by inhibition measurements. The structural information obtained affords possibilities for design of new more potent inhibitors that might ultimately become drugs against candidiasis. The strategy to combine substrate specificity studies with inhibitor screening has led to complementary results that generate a framework for further development of potent inhibitors.
3

Interaction Studies of Secreted Aspartic Proteases (Saps) from <i>Candida albicans</i> : Application for Drug Discovery

Backman, Dan January 2005 (has links)
<p>This thesis is focused on enzymatic studies of the secreted aspartic proteases (Saps) from <i>Candida albicans</i> as a tool for discovery of anti-<i>candida</i> drugs. <i>C. albicans</i> causes infections in a number of different locations, which differ widely in the protein substrates available and pH. Since <i>C. albicans</i> needs Saps during virulent growth, these enzymes are good targets for drug development.</p><p>In order to investigate the catalytic characteristics of Saps and their inhibitor affinities, substrate-based kinetic assays were developed. Due to the low sensitivity of these assays, especially at the sub-optimal pH required to mimic the different locations of infections, these assays were not satisfactory. Therefore, a biosensor assay was developed whereby, it was possible to study interaction between Saps and inhibitors without the need to optimise catalytic efficacy. Furthermore, the biosensor assay allowed determination of affinity, as well as the individual association and dissociation rates for inhibitor interactions.</p><p>Knowledge about substrate specificity, Sap subsite adaptivity, and the pH dependencies of catalytic efficacy has been accumulated. Also, screening of transition-state analogue inhibitors designed for HIV-1 protease has revealed inhibitors with affinity for Saps. Furthermore, the kinetics and pH dependencies of their interaction with Saps have been investigated. One of these inhibitors, BEA-440, displayed a complex interaction with Saps, indicating a conformational change upon binding and a very slow dissociation rate. A time dependent interaction was further supported by inhibition measurements. The structural information obtained affords possibilities for design of new more potent inhibitors that might ultimately become drugs against candidiasis. The strategy to combine substrate specificity studies with inhibitor screening has led to complementary results that generate a framework for further development of potent inhibitors.</p>
4

Funkční nanočástice pro plasmonické biosenzory / Functional nanoparticles for plasmonic biosensors

Přítulová, Marie January 2016 (has links)
This thesis aims to prepare functional gold nanoparticles (AuNPs) and use them in conjunction with a surface plasmon resonance (SPR) biosensor for highly sensitive detection of carcinoembryonic antigen (CEA). In this work, preparation of colloidal AuNPs was investigated and a three-step synthesis was optimized to yield spherical nanoparticles with a diameter of about 100 nm and smooth surface. The synthesized AuNPs were functionalized by a self-assembled monolayer of carboxy-PEG alkanethiols and streptavidin and characterized by UV/VIS spectroscopy and -potential method. Finally, the functionalized AuNPs were employed in sandwich assay for the sensitive detection of CEA and it was demonstrated that they can enhance sensor response to CEA by a factor of 100 compared to the direct detection of CEA.
5

Biosensor Studies of Ligand Interactions with Structurally Flexible Enzymes : Applications for Antiviral Drug Development

Geitmann, Matthis January 2005 (has links)
The use of a surface plasmon biosensor fills a missing link in kinetic studies of enzymes, since it measures directly the interaction between biomolecules and allows determination of parameters that are determined only indirectly in activity assays. The present thesis deals with kinetic and dynamic aspects of ligand binding to two viral enzymes: the human cytomegalovirus (HCMV) protease and the human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). The improved description of interactions presented herein will contribute to the discovery and development of antiviral drugs. The biosensor method provided new insights into the interaction between serine proteases and a peptide substrate, as well as substrate-induced conformational changes of the enzymes. The direct binding assay served as a tool for characterising the binding mechanism of HCMV protease inhibitors. Kinetic details of the interaction between HIV-1 RT and non-nucleoside reverse transcriptase inhibitors (NNRTIs) were unravelled. The recorded sensorgrams revealed several forms of complexity. A general binding model for the analysis was derived from the data, describing a two-state mechanism for the enzyme and a high- and a low-affinity interaction with the inhibitor. Interaction kinetic constants were determined for the clinically used NNRTIs and several investigational inhibitors. The established method was applied to investigate the mechanism of resistance against NNRTIs. Amino acid substitutions in the NNRTI-binding site resulted in both decreased association rates and increased dissociation rates for the inhibitors. The K103N and the L100I substitution also interfered with the formation of the binding site, thereby facilitating inhibitor binding and unbinding. Finally, thermodynamic analysis revealed that, despite the hydrophobic character of the interaction, NNRTI binding was mainly enthalpy-driven at equilibrium. Large entropy contributions in the association and dissociation indicated that binding is associated with a dynamic effect in the enzyme.
6

In situ studium interakcí nukleových kyselin významných z hlediska genové exprese a terapie založené na jejím potlačení / In situ study of nuclear acids interactions key for gene expression and therapy based on its silencing

Špringer, Tomáš January 2015 (has links)
In this doctoral thesis we study novel analogues based on R06 aptamers and targeting TAR hairpins of the HIV virus by means of surface plasmon resonance biosensor, which allows for sensitive and real-time monitoring of molecular interactions. We investigate seven different modifications placed at nine different positions on the R06 aptamer in order to find out their applicability in the construction of efficient and stable anti-TAR oligonucleotides. We also determine which positions are suitable for substitutions with a modification and interpret the results in the context of the local nucleotide geometries and interactions in the TAR/anti-TAR complex. In this doctoral thesis we further develop a new fluidic system. This fluidic system eliminates sample dispersion and intermixing effects and thus enables accurate monitoring of molecular interactions on the surface of an SPR chip. We also characterize experimental conditions on the surface of an oligonucleotide chip and their relations towards bio-molecular assays. Specifically, we study the shielding effect of monovalent and divalent cations, which are crucial for the interaction of negatively charged oligonucleotides.
7

Conception d'un imageur CMOS à colonne active pour un biocapteur optique SPR / Design and Implementation of a CMOS imager with active column for SPR-based sensors / Diseño e implementaciòn de un sensor de imagen CMOS de columna activa para biosensores basados en SPR

Salazar Soto, Arnoldo 30 October 2013 (has links)
Cette thèse présente la conception et la mise en œuvre d'un imageur CMOS pour être utilisé dans biocapteurs intégrés basés sur Résonance Plasmonique de Surface (SPR). Tout d'abord, les conditions optimales pour la résonance plasmon dans une interface compatible CMOS / post-CMOS sont obtenus par modélisation avec COMSOL. Deuxièmement, un imageur CMOS de Colonne Actif (CMOS-ACS) du 32x32 pixels est mis en œuvre sur une technologie CMOS 0,35 um. Dans une interface d'or-eau avec une excitation de prisme, on constate que pour les prismes avec des indices de réfraction de 1,55 et 1,46, le couplage optimal avec le plasmon est obtenu pour des films d'or d'une épaisseur de 50 et 45 nm, respectivement. Dans ces conditions, environ 99,19% et 99,99% de l'énergie de la lumière incidente est transférée à le surface plasmon pour les deux prismes respectivement, à condition que la lumière incidente, avec une longueur d'onde de 633 nm, arrive avec un angle d'incidence de 68,45° et 79,05° respectivement. Il est également obtenu qu'un changement de RIU 10-4 de l'indice de réfraction du milieu diélectrique, produit un changement de 0,01 ° dans l'angle de résonance de plasmons qui, dans un schéma de modulation d'intensité de lumière produit une variation de 0,08% dans la lumière réfléchie au photodétecteur. En ce qui concerne le imageur CMOS, une photodiode n-well/p-substrate est choisi comme l'élément de photodétection, en raison de sa faible capacité de jonction, ce qui conduit à un rendement élevé et le gain de conversion élevé comparativement à une photodiode n-diff/p-substrate. Des simulations sur ordinateur avec Cadence et Silvaco produit une capacité de jonction de 31 FF et 135 fF respectivement. Le pixel de l'imageur est basé sur une configuration à trois transistors (3T) et présente un facteur de remplissage de 61%. Le circuit de lecture utilise une technique de capteur de colonne actif (ACS) pour réduire le bruit à motif fixe (Fixed Pattern Noise ou FPN en anglais) liée au le Capteur à Pixels Actif (APS) traditionnelle. En outre, Non-Corrélés Echantillonnage Double (Non-Correlated Double Sampling ou NCDS en anglais) et Delta double échantillonnage (DDS) sont utilisés comme techniques de réduction du bruit. Un montage optique expérimental est utilisé pour caractériser les performances de l'imageur, et nous avons obtenu un gain en conversion de 7,3 uV/e-, une capacité de jonction de la photodiode de 22 fF, un bruit de lecture de 324,5 uV, ce qui équivaut à 45 électrons, et une gamme dynamique de 50,5 dB. Les avantages de l'ACS et NCDS-DDS sont observées dans le niveau faible de FPN du pixel et de la colonne, avec une valeur de 0,09% et 0,06% respectivement. Le travail présenté dans cette thèse est une première étape vers l'objectif de développer une plateforme entièrement intégrée SPR pour biocapteurs, incorporant source de lumière, l'interface SPR, canal microfluidique, les éléments d'optique et imageur CMOS. / This dissertation presents the design and implementation of a CMOS imager for use in integrated biosensors based on Surface Plasmon Resonance. First, the optimal conditions for plasmon resonance in a CMOS/Post-CMOS compatible interface are obtained by COMSOL modelling. Second, a 32x32-pixel CMOS-Active Column Sensor (CMOS-ACS) is implemented on 0.35 um CMOS technology. In a gold-water interface with prism excitation, it is found that for prisms showing refractive indexes of 1.55 and 1.46, optimal plasmon coupling is obtained for gold films with thicknesses of 50 and 45 nm respectively. Under these conditions, approximately 99.19% and 99.99% of the incident light's energy is transferred to the surface plasmon for both prism respectively, provided that the incident light, with a wavelength of 633 nm, arrives with incidence angles of 68.45° and 79.05° respectively. It is also obtained that a change of 10-4 RIU in the refractive index of the dielectric medium, produces a change of 0.01° in the plasmon resonance angle, which under a light intensity modulation scheme produces a change of 0.08% in the reflected light's energy reaching the photodetector. Concerning the CMOS imager, a n-well/p-substrate photodiode is selected as the photosensing element, due to its low junction capacitance, which results in high efficiency and high conversion gain compared to the n-diff/p-substrate photodiode. Computer simulations with Cadence and Silvaco produced a junction capacitance of 31 fF and 135 fF respectively. The imager's pixel is based on a three-transistor (3T) configuration and shows a fill factor of 61%. The readout circuitry employs an Active Column Sensor (ACS) technique to reduce the Fixed Pattern Noise (FPN) associated with traditional Active Pixel Sensors (APS). Additionally, Non-Correlated Double Sampling (NCDS) and Delta Double Sampling (DDS) are used as noise reduction techniques. An experimental optical setup is used to characterize the performance of the imager, obtaining a conversion gain of 7.3 uV/e-, a photodiode junction capacitance of 21.9 fF, a read noise of 324.5 uV, equivalent to ~45 e- and a dynamic range of 50.5 dB. The benefits of ACS and NCDS-DDS are observed in the low pixel and column FPN of 0.09% and 0.06% respectively. The work presented in this thesis is a first step towards the goal of developing a fully integrated SPR-biosensing platform incorporating light source, SPR interface, microfluidic channel, optical elements and CMOS imager.

Page generated in 0.0587 seconds