• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 1
  • Tagged with
  • 22
  • 22
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Calcul neuronal distribué pour la perception visuelle du mouvement

Cerda, Mauricio 14 October 2011 (has links) (PDF)
Le travail présenté dans cette thèse propose des modèles de calcul pour l'extraction du mouvement et la reconnaissance de formes dynamiques à partir du flux d'informations visuelles, en s'inspirant des mécanismes correspondants mis en jeu dans le cerveau. Plus précisément, nous proposons des hypothèses sur la façon dont le mécanisme cérébral de ces tâches peut fonctionner et nous nous efforçons de déterminer comment des neurones avec un petit champ récepteur sont en mesure de fournir des réponses cohérentes et de coder des formes dynamiques complexes. Nous étudions chaque aspect du traitement réalisé dans le cerveau que nous avons modélisé dans un cadre connexionniste, en montrant comment ces systèmes distribués peuvent être utilisés pour des tâches complexes telles que la détection de mouvement et la reconnaissance de formes dynamiques. Du point de vue informatique ces modèles offrent de nouveaux algorithmes, avec des propriétés intéressantes telles que l'utilisation de mémoire distribuée et la robustesse. La détection de mouvement et la discrimination de motifs visuels complexes à partir de ce signal (ou "vision cognitive") structurent les deux parties dans lesquelles le manuscrit se divise. La première partie porte sur la détection de mouvement en étudiant la façon dont l'extraction de caractéristiques visuelles est effectuée à partir du flux d'information visuel, et en particulier la façon dont les problèmes dus à la petite taille et la gamme de détection réduite des détecteurs de mouvement locaux peuvent être résolus. Dans la deuxième partie nous étudions la façon dont la classification des motifs visuels dynamiques complexes est réalisée à partir du traitement fourni par le système primaire de vision pour réaliser ce que nous appelons la vision cognitive, en évaluant au passage différentes techniques d'extraction de caractéristiques visuelles.
22

Mécanismes de la perception du mouvement : implications des boucles cortico-thalamiques

Merabet, Lotfi 05 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / Parmi la multitude de fonctions que le système visuel effectue, la perception du mouvement est l'une des plus importantes. Il a été clairement démontré qu'il existe des sites cérébraux spécifiques pour la détection, l'analyse et l'intégration du mouvement. De façon classique, les mécanismes neurophysiologiques qui sous-tendent ces processus sont attribués aux aires corticales. Le thalamus quant à lui, est généralement considéré comme un « relais passif », c'est à dire qui transmet l'information sensorielle vers le cortex sans modifier le signal entrant. Le but de ce projet sera de préciser les mécanismes nerveux impliqués dans la perception et l'intégration du mouvement et plus précisément, la contribution des régions cérébrales sous-corticales et corticales intimement liés par des connexions réciproques. Ces régions sont: le complexe LP-pulvinar, situé dans le thalamus, l'aire extra-striée postero-médiane suprasylvienne (PMLS) et le cortex ectosylvien visuel antérieur (AEV); deux régions corticales ayant un rôle spécialisé dans l'analyse du mouvement. Les expériences ont été réalisées sur des chats adultes normaux anesthésiés. Une microélectrode d'enregistrement a été descendue dans ces trois sites afin d'enregistrer l'activité des neurones. Les réponses neuronales à des réseaux sinusoïdaux, des patrons texturés (« bruit visuel ») et des « plaids » ont été caractérisé pour étudier les mécanismes qui sous-tendent l'intégration du mouvement au niveau cellulaire. Afin de caractériser d'avantage ce lien, l'influence des aires corticales sur les propriétés thalamiques a été déterminée par inactivation locale réversible (i.e. micro-injection de l'acide y-aminobutyrique; GABA) ou par inactivation permanente plus vaste (i.e. ablation chirurgicale). Les résultats de cette étude se résument comme suit : 1) les propriétés des réponses neuronales du PMLS au bruit visuel sont similaires à celles du LP-pulvinar. Ce résultat suggère que les processus d'analyse impliquant une boucle cortico-thalamique PMLS-LP sont comparables au niveau cortical et sous-cortical. 2) les neurones du PMLS et du LP peuvent coder le mouvement relatif entre un objet et son arrièreplan. De plus, l'inactivation réversible du LP perturbe ces réponses au niveau du PMLS. Ces résultats sont essentiels dans l'établissement d'un lien fonctionnel entre ces deux régions quant à l'analyse de certains aspects du mouvement. 3) certains neurones du complexe LP-pulvinar sont capables d'intégrer l'information directionnelle telle que définie par des « plaids ». Ceci constitue la première démonstration de propriétés de haut-niveau en dehors du cortex. De plus, cette découverte suggère que le LP-pulvinar participe de façon parallèle et en coopération avec le cortex dans l'analyse de scènes visuelles complexes via l'exploitation des boucles cortico-thalamiques. Les résultats de cette étude sont importants non seulement pour appuyer des notions théoriques novatrices sur le rôle du thalamus, mais aussi dans le but de réévaluer et de préciser les mécanismes nerveux qui sous-tendent la perception du mouvement et l'intégration sensorielle en général. / Among the multitude of functions the visual system carries out, the perception of motion is one of the most important. It has been clearly demonstrated that the visual system contains numerous specialised areas implicated in the detection, analysis, and integration of motion. Classically, the neurophysiological mechanisms underlying these processes have been uniquely attributed to regions of the cerebral cortex. The thalamus for its part, has generally been regarded as a passive relay transferring information to the cortex without any modification of the sensory signal. The purpose of this study is to investigate the neurophysiological mechanisms implicated in the perception and integration of motion and more specifically, delineate the contribution of cortical and subcortical structures that are intimately related via reciprocal connections. These areas are: the LP-pulvinar complex; located in the thalamus, and the extrastriate posteromedial lateral suprasylvian (PMLS) and anterior ectosylvian visual (AEV) cortical areas; two regions whose role in motion analysis are well established. Experiments were carried out on normal adult anaesthetised cats. A recording microelectrode was descended in one of the aforementioned areas to record neuronal activity. Neuronal responses to drifting sine-wave gratings, moving texture patterns ("visual noise"), and "plaid patterns" were recorded in order to investigate the mechanisms underlying the integration of motion information at the neuronal level. As a continuation of the study, the influence of cortical motion areas on recorded thalannic responses will be determined by local reversible deactivation (i.e. microinjection of y-aminobutyric acid; GABA) or by irreversible deactivation (i.e. surgical ablation). The results of the study are as follows: 1) Response properties of PMLS neurons to moving texture patterns are similar to those found in the LP-pulvinar connplex. These results suggest that motion processing along both components of the PMLS-LP cortico-thalamic loop is carried out within a similar envelope of analysis. 2) Neurons in both PMLS and LP are able to code the relative motion of an object with respect to its background. Furthermore, reversible deactivation of LP disrupts these responses in PMLS. These results are important in establishing that both these areas are functionally linked in the analysis of specific aspects of motion. 3) The fact that pattern-selective responses to moving plaids can be found in the LP-pulvinar complex suggests that this area is capable of carrying out higher-order motion computations. The importance of this later results is two-fold. First, these findings represent the first demonstration that higher-order properties exists outside extrastriate cortical areas. Second, they further suggest that certain thalamic nuclei, via the establishment of cortico-thalamic loops, participate in parallel and in co-operation with the cortex in the analysis of complex visual scenes. The results of this study are important not only to reinforce current and novel theoretical notions regarding the role of the thalamus, but also in the re-evaluation of the neurophysiological mechanisms involved in motion perception and sensory integration as a whole.

Page generated in 0.1037 seconds