• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance anomaly detection and resolution for autonomous clouds

Ibidunmoye, Olumuyiwa January 2017 (has links)
Fundamental properties of cloud computing such as resource sharing and on-demand self-servicing is driving a growing adoption of the cloud for hosting both legacy and new application services. A consequence of this growth is that the increasing scale and complexity of the underlying cloud infrastructure as well as the fluctuating service workloads is inducing performance incidents at a higher frequency than ever before with far-reaching impact on revenue, reliability, and reputation. Hence, effectively managing performance incidents with emphasis on timely detection, diagnosis and resolution has thus become a necessity rather than luxury. While other aspects of cloud management such as monitoring and resource management are experiencing greater automation, automated management of performance incidents remains a major concern. Given the volume of operational data produced by cloud datacenters and services, this thesis focus on how data analytics techniques can be used in the aspect of cloud performance management. In particular, this work investigates techniques and models for automated performance anomaly detection and prevention in cloud environments. To familiarize with developments in the research area, we present the outcome of an extensive survey of existing research contributions addressing various aspects of performance problem management in diverse systems domains. We discuss the design and evaluation of analytics models and algorithms for detecting performance anomalies in real-time behaviour of cloud datacenter resources and hosted services at different resolutions. We also discuss the design of a semi-supervised machine learning approach for mitigating performance degradation by actively driving quality of service from undesirable states to a desired target state via incremental capacity optimization. The research methods used in this thesis include experiments on real virtualized testbeds to evaluate aspects of proposed techniques while other aspects are evaluated using performance traces from real-world datacenters. Insights and outcomes from this thesis can be used by both cloud and service operators to enhance the automation of performance problem detection, diagnosis and resolution. They also have the potential to spur further research in the area while being applicable in related domains such as Internet of Things (IoT), industrial sensors as well as in edge and mobile clouds. / Grundläggande egenskaper för datormoln såsom resursdelning och självbetjäning driver ett växande nyttjande av molnet för internettjänster. En följd av denna tillväxt är att den underliggande molninfrastrukturens ökande storlek och komplexitet samt fluktuerade arbetsbelastning orsakar prestandaincidenter med högre frekvens än någonsin tidigare. En konsekvens av detta blir omfattande inverkan på intäkter, tillförlitlighet och rykte för de som äger tjänsterna. Det har därför blivit viktigt att snabbt och effektivt hantera prestandaincidenter med avseende på upptäckt, diagnos och korrigering. Även om andra aspekter av resurshantering för datormoln, som övervakning och resursallokering, på senare tid automatiserats i allt högre grad så är automatiserad hantering av prestandaincidenter fortfarande ett stort problem. Denna avhandling fokuserar på hur prestandahanteringen i molndatacenter kan förbättras genom användning av dataanalystekniker på de stora datamängder som produceras i de system som monitorerar prestanda hos datorresurser och tjänster. I synnerhet undersöks tekniker och modeller för automatisk upptäckt och förebyggande av prestandaanomalier i datormoln. För att kartlägga utvecklingen inom forskningsområdet presenterar vi resultatet av en omfattande undersökning av befintliga forskningsbidrag som behandlar olika aspekter av hantering av prestandaproblem inom i relevanta tillämpningsområden. Vi diskuterar design och utvärdering av analysmodeller och algoritmer för att upptäcka prestandaanomalier i realtid hos resurser och tjänster. Vi diskuterar också utformningen av ett maskininlärningsbaserat tillvägagångssätt för att mildra prestandaförluster genom att aktivt driva tjänsternas kvalitet från oönskade tillstånd till ett önskat målläge genom inkrementell kapacitetoptimering. Forskningsmetoderna som används i denna avhandling innefattar experiment på verkliga virtualiserade testmiljöer för att utvärdera aspekter av föreslagna tekniker medan andra aspekter utvärderas med hjälp av belastningsmönster från verkliga datacenter. Insikter och resultat från denna avhandling kan användas av både moln- och tjänsteoperatörer för att bättre automatisera detekteringen av prestandaproblem, inklusive dess diagnos och korrigering. Resultaten har också potential att uppmuntra vidare forskning inom området samtidigt som de är användbara inom relaterade områden som internet-av-saker, industriella sensorer, och storskaligt distribuerade moln eller telekomnätverk. / Cloud Control / eSSENCE
2

High-Performance Analytics (HPA) / High-Performance Analytics (HPA)

Soukup, Petr January 2012 (has links)
The aim of the thesis on the topic of High-Performance Analytics is to gain a structured overview of solutions of high performance methods for data analysis. The thesis introduction concerns with definitions of primary and secondary data analysis, and with the primary systems which are not appropriate for analytical data analysis. The usage of mobile devices, modern information technologies and other factors caused a rapid change of the character of data. The major part of this thesis is devoted particularly to the historical turn in the new approaches towards analytical data analysis, which was caused by Big Data, a very frequent term these days. Towards the end of the thesis there are discussed the system sources which greatly participate in the new approaches to the analytical data analysis as well as in the technological solutions of High Performance Analytics themselves. The second, practical part of the thesis is aimed at a comparison of the performance in conventional methods for data analysis and in one of the high performance methods of High Performance Analytics (more precisely, with In-Memory Analytics). Comparison of individual solutions is performed in identical environment of High Performance Analytics server. The methods are applied to a certain sample whose volume is increased after every round of executed measurement. The conclusion evaluates the tests results and discusses the possibility of usage of the individual High Performance Analytics methods.

Page generated in 0.0678 seconds