• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 9
  • 2
  • 1
  • Tagged with
  • 68
  • 68
  • 20
  • 13
  • 13
  • 12
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development and Application of an Analyst Process Model for a Search Task Scenario

Karl, Hendrickson K. 04 June 2014 (has links)
No description available.
42

Hyperspectral Target Detection Performance Modeling

Morman, Christopher Joseph January 2015 (has links)
No description available.
43

A performance model for wormhole-switched interconnection networks under self-similar traffic.

Min, Geyong, Ould-Khaoua, M. January 2004 (has links)
No / Many recent studies have convincingly demonstrated that network traffic exhibits a noticeable self-similar nature which has a considerable impact on queuing performance. However, the networks used in current multicomputers have been primarily designed and analyzed under the assumption of the traditional Poisson arrival process, which is inherently unable to capture traffic self-similarity. Consequently, it is crucial to reexamine the performance properties of multicomputer networks in the context of more realistic traffic models before practical implementations show their potential faults. In an effort toward this end, this paper proposes the first analytical model for wormhole-switched k-ary n-cubes in the presence of self-similar traffic. Simulation experiments demonstrate that the proposed model exhibits a good degree of accuracy for various system sizes and under different operating conditions. The analytical model is then used to investigate the implications of traffic self-similarity on network performance. This study reveals that the network suffers considerable performance degradation when subjected to self-similar traffic, stressing the great need for improving network performance to ensure efficient support for this type of traffic.
44

Scalable and Energy Efficient Execution Methods for Multicore Systems

Li, Dong 16 February 2011 (has links)
Multicore architectures impose great pressure on resource management. The exploration spaces available for resource management increase explosively, especially for large-scale high end computing systems. The availability of abundant parallelism causes scalability concerns at all levels. Multicore architectures also impose pressure on power management. Growth in the number of cores causes continuous growth in power. In this dissertation, we introduce methods and techniques to enable scalable and energy efficient execution of parallel applications on multicore architectures. We study strategies and methodologies that combine DCT and DVFS for the hybrid MPI/OpenMP programming model. Our algorithms yield substantial energy saving (8.74% on average and up to 13.8%) with either negligible performance loss or performance gain (up to 7.5%). To save additional energy for high-end computing systems, we propose a power-aware MPI task aggregation framework. The framework predicts the performance effect of task aggregation in both computation and communication phases and its impact in terms of execution time and energy of MPI programs. Our framework provides accurate predictions that lead to substantial energy saving through aggregation (64.87% on average and up to 70.03%) with tolerable performance loss (under 5%). As we aggregate multiple MPI tasks within the same node, we have the scalability concern of memory registration for high performance networking. We propose a new memory registration/deregistration strategy to reduce registered memory on multicore architectures with helper threads. We investigate design polices and performance implications of the helper thread approach. Our method efficiently reduces registered memory (23.62% on average and up to 49.39%) and avoids memory registration/deregistration costs for reused communication memory. Our system enables the execution of application input sets that could not run to the completion with the memory registration limitation. / Ph. D.
45

Automated Runtime Analysis and Adaptation for Scalable Heterogeneous Computing

Helal, Ahmed Elmohamadi Mohamed 29 January 2020 (has links)
In the last decade, there have been tectonic shifts in computer hardware because of reaching the physical limits of the sequential CPU performance. As a consequence, current high-performance computing (HPC) systems integrate a wide variety of compute resources with different capabilities and execution models, ranging from multi-core CPUs to many-core accelerators. While such heterogeneous systems can enable dramatic acceleration of user applications, extracting optimal performance via manual analysis and optimization is a complicated and time-consuming process. This dissertation presents graph-structured program representations to reason about the performance bottlenecks on modern HPC systems and to guide novel automation frameworks for performance analysis and modeling and runtime adaptation. The proposed program representations exploit domain knowledge and capture the inherent computation and communication patterns in user applications, at multiple levels of computational granularity, via compiler analysis and dynamic instrumentation. The empirical results demonstrate that the introduced modeling frameworks accurately estimate the realizable parallel performance and scalability of a given sequential code when ported to heterogeneous HPC systems. As a result, these frameworks enable efficient workload distribution schemes that utilize all the available compute resources in a performance-proportional way. In addition, the proposed runtime adaptation frameworks significantly improve the end-to-end performance of important real-world applications which suffer from limited parallelism and fine-grained data dependencies. Specifically, compared to the state-of-the-art methods, such an adaptive parallel execution achieves up to an order-of-magnitude speedup on the target HPC systems while preserving the inherent data dependencies of user applications. / Doctor of Philosophy / Current supercomputers integrate a massive number of heterogeneous compute units with varying speed, computational throughput, memory bandwidth, and memory access latency. This trend represents a major challenge to end users, as their applications have been designed from the ground up to primarily exploit homogeneous CPUs. While heterogeneous systems can deliver several orders of magnitude speedup compared to traditional CPU-based systems, end users need extensive software and hardware expertise as well as significant time and effort to efficiently utilize all the available compute resources. To streamline such a daunting process, this dissertation presents automated frameworks for analyzing and modeling the performance on parallel architectures and for transforming the execution of user applications at runtime. The proposed frameworks incorporate domain knowledge and adapt to the input data and the underlying hardware using novel static and dynamic analyses. The experimental results show the efficacy of the introduced frameworks across many important application domains, such as computational fluid dynamics (CFD), and computer-aided design (CAD). In particular, the adaptive execution approach on heterogeneous systems achieves up to an order-of-magnitude speedup over the optimized parallel implementations.
46

Performance Modeling, Optimization, and Characterization on Heterogeneous Architectures

Panwar, Lokendra Singh 21 October 2014 (has links)
Today, heterogeneous computing has truly reshaped the way scientists think and approach high-performance computing (HPC). Hardware accelerators such as general-purpose graphics processing units (GPUs) and Intel Many Integrated Core (MIC) architecture continue to make in-roads in accelerating large-scale scientific applications. These advancements, however, introduce new sets of challenges to the scientific community such as: selection of best processor for an application, effective performance optimization strategies, maintaining performance portability across architectures etc. In this thesis, we present our techniques and approach to address some of these significant issues. Firstly, we present a fully automated approach to project the relative performance of an OpenCL program over different GPUs. Performance projections can be made within a small amount of time, and the projection overhead stays relatively constant with the input data size. As a result, the technique can help runtime tools make dynamic decisions about which GPU would run faster for a given kernel. Usage cases of this technique include scheduling or migrating GPU workloads over a heterogeneous cluster with different types of GPUs. We then present our approach to accelerate a seismology modeling application that is based on the finite difference method (FDM), using MPI and CUDA over a hybrid CPU+GPU cluster. We describe the generic computational complexities involved in porting such applications to the GPUs and present our strategy of efficient performance optimization and characterization. We also show how performance modeling can be used to reason and drive the hardware-specific optimizations on the GPU. The performance evaluation of our approach delivers a maximum speedup of 23-fold with a single GPU and 33-fold with dual GPUs per node over the serial version of the application, which in turn results in a many-fold speedup when coupled with the MPI distribution of the computation across the cluster. We also study the efficacy of GPU-integrated MPI, with MPI-ACC as an example implementation, in a seismology modeling application and discuss the lessons learned. / Master of Science
47

Theories and Techniques for Efficient High-End Computing

Ge, Rong 02 November 2007 (has links)
Today, power consumption costs supercomputer centers millions of dollars annually and the heat produced can reduce system reliability and availability. Achieving high performance while reducing power consumption is challenging since power and performance are inextricably interwoven; reducing power often results in degradation in performance. This thesis aims to address these challenges by providing theories, techniques, and tools to 1) accurately predict performance and improve it in systems with advanced hierarchical memories, 2) understand and evaluate power and its impacts on performance, 3) control power and performance for maximum efficiency. Our theories, techniques, and tools have been applied to high-end computing systems. Our theroetical models can improve algorithm performance by up to 59% and accurately predict the impacts of power on performance. Our techniques can evaluate power consumption of high-end computing systems and their applications with fine granularity and save up to 36% energy with little performance degradation. / Ph. D.
48

Methodology for VHDL performance model construction and validation

Vuppala, Srilekha 29 August 2008 (has links)
Hardware description languages(HDLs) are frequently used to construct performance models to represent systems early in the design process. This research study has resulted in the development of a methodology to construct VHDL performance models which will help to significantly reduce the time from an initial conception to a working design. To further reduce development time, reuse of existing structural primitives is emphasized. Typical models of multi-processor architectures are very large and complex. Validation of theses models is difficult and time consuming. This thesis also develops a methodology for model validation. A seventeen processor raceway architecture, that was developed as a part of the ongoing RASSP(Rapid Prototyping of Application Specific Signal Processors) project, is used as a template to illustrate the new methodologies of performance model construction and model validation. The design consists of seventeen processors interconnected by multiple crossbar switches. Two software algorithms were mapped onto the architecture: a Synthetic Aperture Radar(SAR) Range Processing Algorithm and a SAR Multiswath Processing Algorithm. The methodologies developed in this thesis will considerably reduce the amount of time needed to construct and validate performance models of complex multi-processor architectures. / Master of Science
49

Energy-aware Thread and Data Management in Heterogeneous Multi-Core, Multi-Memory Systems

Su, Chun-Yi 03 February 2015 (has links)
By 2004, microprocessor design focused on multicore scaling"increasing the number of cores per die in each generation "as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitive or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems. In addition, I propose an analytical model based on the queuing method that captures important factors in multi-core, multi-memory systems to quantify the tradeoff between performance and energy. The model considers the effect of these factors in a holistic fashion that provides a general view of performance and energy consumption in contemporary systems. Finally, I focus on resource management of future heterogeneous memory systems, which may combine two heterogeneous memories to scale out memory capacity while maintaining reasonable power use. I present a new memory controller design that combines the best aspects of two baseline heterogeneous page management policies to migrate data between two heterogeneous memories so as to optimize performance and energy. / Ph. D.
50

Energy and Performance Models Enabling Design Space Exploration using Domain Specific Languages

Umar, Mariam 25 May 2018 (has links)
With the advent of exascale architectures maximizing performance while maintaining energy consumption within reasonable limits has become one of the most critical design constraints. This constraint is particularly significant in light of the power budget of 20 MWatts set by the U.S. Department of Energy for exascale supercomputing facilities. Therefore, understanding an application's characteristics, execution pattern, energy footprint, and the interactions of such aspects is critical to improving the application's performance as well as its utilization of the underlying resources. With conventional methods of analyzing performance and energy consumption trends scientists are forced to limit themselves to a manageable number of design parameters. While these modeling techniques have catered to the needs of current high-performance computing systems, the complexity and scale of exascale systems demands that large-scale design-space-exploration techniques are developed to enable comprehensive analysis and evaluations. In this dissertation we present research on performance and energy modeling of current high performance computing and future exascale systems. Our thesis is focused on the design space exploration of current and future architectures, in terms of their reconfigurability, application's sensitivity to hardware characteristics (e.g., system clock, memory bandwidth), application's execution patterns, application's communication behavior, and utilization of resources. Our research is aimed at understanding the methods by which we may maximize performance of exascale systems, minimize energy consumption, and understand the trade offs between the two. We use analytical, statistical, and machine-learning approaches to develop accurate, portable and scalable performance and energy models. We develop application and machine abstractions using Aspen (a domain specific language) to implement and evaluate our modeling techniques. As part of our research we develop and evaluate system-level performance and energy-consumption models that form part of an automated modeling framework, which analyzes application signatures to evaluate sensitivity of reconfigurable hardware components for candidate exascale proxy applications. We also develop statistical and machine-learning based models of the application's execution patterns on heterogeneous platforms. We also propose a communication and computation modeling and mapping framework for exascale proxy architectures and evaluate the framework for an exascale proxy application. These models serve as external and internal extensions to Aspen, which enable proxy exascale architecture implementations and thus facilitate design space exploration of exascale systems. / Ph. D.

Page generated in 0.1058 seconds