• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 48
  • 21
  • 15
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Conceptual Framework for Assessing Post-Earthquake Fire Performance of Buildings

Kim, Jin Kyung 25 April 2014 (has links)
Earthquakes can severely damage building structural and nonstructural systems and components, including active and passive fire protection and egress systems. If the occurrence of such damage is not anticipated at the design stage, the impact of a post-earthquake fire could be significant, as building and fire protection systems may not perform as expected. Unfortunately, even though both the seismic and fire engineering communities utilize performance-based approaches for designing well-performing and resilient buildings under earthquake and fire hazards respectively, each discipline carries out their associated building performance analyses independently. As a result, fire protection engineers have little guidance as to how to estimate structural and nonstructural building systems and component damage as inputs to help them develop post-earthquake building fire scenarios. To help bridge this gap, a conceptual framework is developed that illustrates how performance-based approaches for earthquake and fire engineering analysis and design can become more integrated for the development of post-earthquake fire scenarios. Using a fictional building in an earthquake prone area as an example, the conceptual framework is implemented to show (a) how earthquake-induced damage to building fire protection systems could be estimated using an earthquake performance assessment tool, (b) how the damage estimates might be translated into physical damage parameters in a way that is meaningful for developing post-earthquake building fire scenarios, (c) how the damage states might be implemented in terms of fire and egress modeling input parameters, and (d) how this information could be used to and compare post-earthquake building fire safety performance to a normal(undamaged) building fire conditions.
12

Towards a Universal and Integrated Digital Representation of Physical Processes

Schwede, Dirk Alexander January 2006 (has links)
Doctor of Philosophy(PhD) / This thesis describes the exploration and the development of computational means to investigate the behaviour of design objects before they are available for investigation in the physical world. The motivation is to inform the design process about the design object’s performance in order to achieve better – more performance-oriented – design outcomes in the sense of energy efficiency and comfort performance than can be achieved by conventional design techniques. The research is structured into five successive parts. - Concept Development – A review of the objective domains comfort assessment and energy efficiency assessment is conducted and the design process, human design activity and the application of simulation in the architectural domain is discussed in order to identify requirements for the development of computational means for design analysis. Requirements regarding model content, model features and model integration are developed. The main requirements are that a highly integrated, three-dimensional and dynamic representation of physical processes is needed and that a universal and integrated representation is required. - Concept Formulation – Based on the identified requirements, the concept for a model is formulated. In order to achieve a universal and integrated representation of physical processes the concept uses the approach of a constructive language. Space is represented with autonomous spatial elements, called congeneric cells. Interaction between the cells is represented by near- and remote-conjunctions. Physical and geometric self-contained formulations of the model reduce the model input requirements, so that geometric information and simple property specification (material, activity) is sufficient to describe the design object in the model. - Model Development – The concept is formulated in mathematical physical terms based on well known physical laws and building physical models (first-principle approach). Heat and moisture conduction, diffusion of various components and a flow model is formulated as near-conjunction processes. Heat radiation, light and sound are modelled with a radiosity approach as remote-conjunctions. The simulation algorithm, which governs the interaction between the cells in order to represent the behaviour of space, is explained. - Computational Implementation – The concept and the model is tested by implementation of a prototype using C++ and OpenGL on a conventional Pentium 4 notebook. The prototype consists of three parts: user-interface, model translator and simulation engine. The user interface functions as model-input and result-output device. The implementation of the concept and of further model parts is described in detail. - Assessment and Testing – The developed concept and the model, as implemented in the prototype, are tested and assessed against the initially developed requirements. The physical model is assessed in regard to plausibility and accuracy of the representation of the physical phenomena. At the end of the thesis the project is summarized, the achievements of the project’s objectives are discussed critically and issues for future research are suggested. Possible applications of the developed model are listed, and the contributions to the application of computational simulation in the architectural domain, developed in this research, are named. At the current stage the required processing time and high memory requirements prevent implementation of a design assessment system, following the suggested concept, at a useful scale. Also the developed physical models require further refinement and testing. Although the general feasibility of the concept and the model was successfully demonstrated, its implementation in a fully applicable design assessment system based on the universal and integrated representation of physical processes was not achieved at this stage. While detailed description and analysis is given in the body of the thesis, detailed formulations of the work and the developed model are given in the appendix. The body and the appendix together provide a complete picture of the research presented.
13

車両衝突を受ける橋梁用鋼製防護柵の材料ひずみ速度効果と性能照査に関する研究

伊藤, 義人, ITOH, Yoshito, 劉, 斌, LIU, Bin, 宇佐見, 康一, USAMI, Koichi, 草間, 竜一, KUSAMA, Ryuichi, 貝沼, 重信, KAINUMA, Shigenobu 04 1900 (has links)
No description available.
14

The social construction of performance-based design

Powell, Ashleigh Boerder 24 April 2013 (has links)
Construction and operation of commercial and residential buildings in the United States have been identified as the single largest sector of energy consumption and contributor to greenhouse gas emissions. Subsequently, buildings must be a primary target for reductions. From short-term incentives, to long-term milestones, building energy efficiency, specifically net zero energy buildings, have emerged as a significant and unprecedented objective for a variety of public and private organizations in the United States. Altering the practices of the building culture requires not only technological innovation, but also an understanding of how practitioners within the building culture see their role in transforming it. Consequently my research seeks to understand how building industry professionals comprehend their capacity to influence the cultural boundaries of their profession in order to account for and mitigate the impacts of energy and emissions in the built environment. Ultimately, this study is an investigation into the social construction of technological change. The AIA+2030 Professional Series offered by the Denver Chapter of the American Institute of Architects has served as the single case study for this investigation. By limiting local conditions to the Denver-based Series and defining advocates as the self-selected group of participants, I’ve narrowed this analysis to reflect a workable microcosm of practitioners who are committed to the investigation and integration of net zero energy design, construction, and building operation practices. In order to substantiate this empirical analysis, I employed a triangulated series of data collection and interpretation consisting of: participant observation, interviews, and a survey. Data analysis involved an iterative process of coding and categorizing the primary key words and themes that emerged throughout my investigation. Each of the perspectives offered during this investigation indicate that architects who are advocates of net zero energy building design perceive that consequential opportunities for fundamental change exist within the social and cultural facets of the building culture. Ultimately, by preferencing social and cultural activism over technological manipulation, these advocates have corroborated the notion that technological change is fundamentally rooted in social change. / text
15

Toward advanced analysis in steel frame design

Hwa, Ken 05 1900 (has links)
The trends for analysis and design of steel frames are indicated in this dissertation. The current practice consists of applying the first-order elastic analysis with amplification factors or second-order elastic analysis in combination with the AISC-LRFD interaction equations. Determination of the effective length factors and individual member capacity checks are necessary to select adequate structural member sizes. The direct analysis method is a second-order elastic analysis approach that eliminates the determination of effective length factors from the current AlSC-LRFD method. Unsupported member length is used to calculate the axial strength of a member. Equivalent notional loads and/or modified stiffness are applied together with the external loads to account for the effects of initial out-of-plumbness and inelastic softening. For both AlSC-LRFD and direct analysis methods, a structure is analyzed as a whole, but the axial and flexural strength of each member is examined individually. Inelastic redistribution of internal forces in the structural system cannot be considered. As a result, determined member forces are not correct and more conservative member sizes will be obtained. Moreover, member-based approaches cannot predict structural behaviors such as failure mode and overstength factor. The advanced analysis method considered in this work is a second-order refined plastic hinge analysis in which both effective length factors and individual member capacity checks are not required. In addition, advanced analysis is a structure systembased analysis/design method that can overcome the difficulties of using member-based design approaches. Thus, advanced analysis is a state-of-the-art method for steel structure design. Several numerical examples are provided to show the design details of all three methods. The design requirements corresponding to each analysis approach are illustrated in these examples. The pros and cons of each method are discussed by comparing the design results. Advanced analysis is also a computer-based analysis and design procedure consistent with the features of performance-based design. Applying advanced analysis to performance-based fire resistance and seismic design are proposed. This dissertation shows advanced analysis is efficient in predicting the duration that structures could support load under elevated temperature and capable of determining the performance level of a structure subjected to seismic forces.
16

Towards a Universal and Integrated Digital Representation of Physical Processes

Schwede, Dirk Alexander January 2006 (has links)
Doctor of Philosophy(PhD) / This thesis describes the exploration and the development of computational means to investigate the behaviour of design objects before they are available for investigation in the physical world. The motivation is to inform the design process about the design object’s performance in order to achieve better – more performance-oriented – design outcomes in the sense of energy efficiency and comfort performance than can be achieved by conventional design techniques. The research is structured into five successive parts. - Concept Development – A review of the objective domains comfort assessment and energy efficiency assessment is conducted and the design process, human design activity and the application of simulation in the architectural domain is discussed in order to identify requirements for the development of computational means for design analysis. Requirements regarding model content, model features and model integration are developed. The main requirements are that a highly integrated, three-dimensional and dynamic representation of physical processes is needed and that a universal and integrated representation is required. - Concept Formulation – Based on the identified requirements, the concept for a model is formulated. In order to achieve a universal and integrated representation of physical processes the concept uses the approach of a constructive language. Space is represented with autonomous spatial elements, called congeneric cells. Interaction between the cells is represented by near- and remote-conjunctions. Physical and geometric self-contained formulations of the model reduce the model input requirements, so that geometric information and simple property specification (material, activity) is sufficient to describe the design object in the model. - Model Development – The concept is formulated in mathematical physical terms based on well known physical laws and building physical models (first-principle approach). Heat and moisture conduction, diffusion of various components and a flow model is formulated as near-conjunction processes. Heat radiation, light and sound are modelled with a radiosity approach as remote-conjunctions. The simulation algorithm, which governs the interaction between the cells in order to represent the behaviour of space, is explained. - Computational Implementation – The concept and the model is tested by implementation of a prototype using C++ and OpenGL on a conventional Pentium 4 notebook. The prototype consists of three parts: user-interface, model translator and simulation engine. The user interface functions as model-input and result-output device. The implementation of the concept and of further model parts is described in detail. - Assessment and Testing – The developed concept and the model, as implemented in the prototype, are tested and assessed against the initially developed requirements. The physical model is assessed in regard to plausibility and accuracy of the representation of the physical phenomena. At the end of the thesis the project is summarized, the achievements of the project’s objectives are discussed critically and issues for future research are suggested. Possible applications of the developed model are listed, and the contributions to the application of computational simulation in the architectural domain, developed in this research, are named. At the current stage the required processing time and high memory requirements prevent implementation of a design assessment system, following the suggested concept, at a useful scale. Also the developed physical models require further refinement and testing. Although the general feasibility of the concept and the model was successfully demonstrated, its implementation in a fully applicable design assessment system based on the universal and integrated representation of physical processes was not achieved at this stage. While detailed description and analysis is given in the body of the thesis, detailed formulations of the work and the developed model are given in the appendix. The body and the appendix together provide a complete picture of the research presented.
17

Application of Sliding Isolation Bearings with Upward Lifting Mechanism for Seismic Performance Enhancement of Multi-Story Structures / 多層構造物の地震時性能向上のための上揚運動機構を有するすべり免震支承の適用

FAKHOURI, Muhannad Yacoub 26 March 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第16821号 / 工博第3542号 / 新制||工||1535(附属図書館) / 29496 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 小池 武, 教授 竹脇 出, 准教授 五十嵐 晃 / 学位規則第4条第1項該当
18

Multi-Hazard Assessment and Performance-Based Design of Facade Systems including Building Frame Interaction

Slovenec, Derek 28 August 2019 (has links)
No description available.
19

Performance Driven Architecture

Anderi, Daniel 11 June 2021 (has links)
No description available.
20

Integrated Design Strategies: A Live-Work Industrial Arts Center for Cincinnati, Ohio

Ruberg, Daniel M. 11 October 2013 (has links)
No description available.

Page generated in 0.0768 seconds