Spelling suggestions: "subject:"permeabilitytesting."" "subject:"permeabilitätsbestimmung.""
1 |
Measurable Mictostructural Properties and their Relationship to Chloride Migration and Durability of ConcreteLu, Shan January 2001 (has links) (PDF)
No description available.
|
2 |
A simple method of test for determining the permeability and capillarity of concreteChen, Yah-Tung. January 1959 (has links)
Call number: LD2668 .T4 1959 C45
|
3 |
Permeance of concrete to air and water vaporSamarai, Mufid A. January 1961 (has links)
Call number: LD2668 .T4 1961 S27
|
4 |
Permeability Determination for Landfill StudiesSmith, Joel George 01 January 1973 (has links) (PDF)
This report reviews the state of the art with respect to permeability determination and sanitary landfills. Characteristics of the soil which determine the permeability are given. Processes which can change the permeability are discussed. Darcy's Law, the mathematical basis of permeability and its validity are discussed. Laboratory and field methods for determining the permeability are also discussed. Applications of determined permeability for design and management of landfills are also indicated.
|
5 |
Improved moisture permeability determinations for packaging films and food coatingsTello-Lopez, Edgar Eduardo 18 February 1994 (has links)
Equipment and procedures for the rapid measurement of the water vapor
permeability of polymer films and food coatings has been evaluated. The
method uses an electronic sensor to measure the concentration increase in
water vapor diffusing through a film into a chamber of known volume. Air of
known humidity is passed over each side of the film to establish a desired
equilibrium relative humidity differential prior to each test. Experimental results
showed that moisture vapor transmission rates of polymer packaging films and
edible coatings could be determined in a range from 0.25 to 12 hours instead
of the usual 24 hour period required by existing tests. Permeance values for
Teflon, high density polyethylene (HDPE), polyethylene terephtalate (PET) and three coating materials were measured at relative humidity differentials between
0 - 100% and temperatures between 5 and 30°C. Results were found to be
similar to values reported in the literature using standard measurement methods.
This method allows the measurement of film and coating permeance values at
temperature and relative humidity values close to actual food storage conditions. / Graduation date: 1994
|
6 |
Ultralite copper reflex tube life test and ceramic fabric wicking rate experimentsSnuggerud, Ross D. 22 January 1993 (has links)
This thesis covers two topics. The first subject
involves tests run on a ultralite reflux tube supplied by
Battelle Pacific Northwest Laboratories (PNL). The second
topic involves tests to determine the relative wicking rates
of several different fabrics.
The ultralite reflux tube supplied by PNL was
constructed of copper and Nextel 312. It had a 10 mil thick
copper evaporator and a 10 mil thick copper condenser end
cap. The bulk of the condenser was 2 mil thick copper
covered by a one inch diameter Nextel 312 woven hose. A
life test was run within the Heat Pipe Test Facility, a
chamber used to simulate low earth orbit. The life test
lasted for over 800 hours, during which time the reflux tube
operated steadily with no drop in performance. At the end
of the test the reflux tube was removed and observed. The
only noticeable change was a slight discoloration of the
Nextel 312 used to cover the condenser. This discoloration
was consistent with previously observed phenomenon.
The second topic, fabric wicking rate studies were done
as a follow up study to the dry uptake tests previously
conducted at Oregon State University. The purpose of the
tests were to get a relative feel for the ability of
different fabrics to wick water. This was achieved using a
drop test in which the fabrics were laid out on a bridge
connecting two containers. One of the containers was
elevated above the other. The fabrics were allowed to wick
water from the upper container to the lower container and
the rate at which this was accomplished was measured. The
fabrics were all able to move significant amounts of water.
The stiffer fabrics seemed to perform better. The major
transport mechanism was transport between fabric layers and
the fabric and the bridge. / Graduation date: 1993
|
7 |
Estimation of water extractability and hydraulic conductivity in tropical mollisols, ultisols, and andisolsLegowo, Eko January 1987 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1987. / Bibliography: leaves [179]-185. / Photocopy. / Microfiche. / xiv, 185 leaves, bound ill. 29 cm
|
8 |
Analysis of constant head borehole infiltration tests in the vadose zoneStephens, Daniel Bruce. January 1979 (has links)
Many environmental studies of water transport through the vadose zone require a field determination of saturated hydraulic conductivity. The purpose of this dissertation is to analyze the reliability of existing methods to determine saturated hydraulic conductivity, K(s), in the vadose zone from constant head borehole infiltration test data. In methods developed by the U. S. Bureau of Reclamation [USBRI, and in lesser known ones, K(s) is computed knowing the height of water in the borehole, length open to the formation, borehole radius, distance above the water table, and steady flow rate. The mathematical formulas on which these methods rest are derived on the basis of numerous simplifying assumptions. The free surface approach is used as the conceptual model of flow from a borehole. Results of numerical simulations are used to compare with the analytical solutions. Simulations with a steady-state finite element computer program, FREESURF, show that the Nasberg-Terletskata solution most closely approximates flow from a borehole with the free surface approach. The influence of capillarity is simulated for saturated-unsaturated porous media in four soils using a finite element computer program, FLUMP, and an integrated finite difference program, TRUST. Contrary to what one finds with the free surface approach, only a small portion of the flow field near the borehole is saturated at steady-state and the cross sectional area normal to the flow path increases with depth below the borehole. For deep water table conditions in fine textured soils, values of K(s) computed using the USBR open-hole equations may be more than 160% greater than the true values; and in coarse sands the USBR solutions may under-estimate the actual value by more than 35%. Mostly because of the influence of unsaturated soil properties there is no unique relationship between K(s), borehole conditions, and steady flow rate, as implied in the analytical solutions. Steady-state simulations demonstrate that existing solutions for borehole infiltration tests in anisotropic or nonuniform soils may also lead to significant errors. Time dependent simulations show that the time to reach a steady flow rate may be more than several days in very dry, low-permeable soils. The time to reach a steady flow rate can be significantly reduced by decreasing the open area between the borehole and formation while increasing the height of water in the borehole. Two methods are proposed to minimize the time, water volume requirements, and cost of conducting constant head borehole infiltration tests. Simulations show that a plot of the inverse of flow rate versus logarithm of time departs from a straight line after about 80% of the steady rate is achieved for various soil and borehole conditions; the steady rate is approximately 0.8 times the rate at the break in slope. In the second method flow rate is plotted versus the inverse of the square root of time and the steady rate is estimated within about 10% by linear extrapolation of early time measurements. USBR field data generally support this linear relationship. Two empirical equations are proposed to compute K(s). The first is applicable for a range of borehole conditions and approximately accounts for capillary effects with a single parameter. The second applies if the height of water in the borehole is I meter, and is based on the time to reach 80% of the steady rate and saturation deficit of the field soil.
|
9 |
USE OF DYES AND PROTEINS AS INDICATORS OF VIRUS ADSORPTION TO SOILS.Bassous, Marlene. January 1983 (has links)
No description available.
|
10 |
Fire performance of high strength concrete materials and structural concreteUnknown Date (has links)
In recent years, high strength concrete (HSC) is becoming an attractive alternative to traditional normal strength concrete (NSC), and is used in a wide range of applications. With the increased use of HSC, concern has developed regarding the behavior of such concrete in fire. Until now, the fire performance of HSC is not fully understood and more research is needed. Full-scale fire testing is time consuming and expensive, and the real fire scenario is different from the standard fire. Performance-based assessment methods, including numerical analysis and simplified method, are being accepted in an increasing number of countries. In this dissertation, the fire testing results both of HSC and NSC are presented, performance-based numerical models are developed to study the fire performance of reinforced concrete (RC) members, and simplified calculation methods are proposed to estimate the load capacity of fire-damaged RC columns/beams. A detailed and comprehensive literature review is presented that provides background information on the high temperature behavior of concrete materials and RC members, as well as information on fire performance assessment procedures and objectives. The fire testing results of seven batches of HSC and NSC are presented and discussed. The test results indicated that the post-fire re-curing results in substantial strength and durability recovery, and its extent depends upon the types of concrete, temperature level, and re-curing age. The fire tests also showed that violent explosive reduced the risk of HSC explosive spalling. The surface crack widths were also reduced during the re-curing process, and in most cases, they were found within the maximum limits specified by the American Concrete Institute (ACI) building code. / Numerical models are developed herein to investigate the behavior in fire of RC columns and beams. The models have been validated against fire test data available in literature, and used to conduct parametric studies, which focused on the size effect on fire resistance of RC columns, and the effect of concrete cover thickness on fire endurance of RC beams. Simplified calculation methods have been developed to predict the load capacity of fire damaged RC columns/beams. This method is validated by five case studies, including thirty-five RC columns tested by other investigators. The predicted results are compared with the experimental results, and the good agreement indicates the adequacy of the simplified method for practical engineering applications. / by Lixian Liu. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
Page generated in 0.089 seconds