• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soft nanocomposites with enhanced electromechanical response for dielectric elastomer actuators

Stoyanov, Hristiyan January 2011 (has links)
Electromechanical transducers based on elastomer capacitors are presently considered for many soft actuation applications, due to their large reversible deformation in response to electric field induced electrostatic pressure. The high operating voltage of such devices is currently a large drawback, hindering their use in applications such as biomedical devices and biomimetic robots, however, they could be improved with a careful design of their material properties. The main targets for improving their properties are increasing the relative permittivity of the active material, while maintaining high electric breakdown strength and low stiffness, which would lead to enhanced electrostatic storage ability and hence, reduced operating voltage. Improvement of the functional properties is possible through the use of nanocomposites. These exploit the high surface-to-volume ratio of the nanoscale filler, resulting in large effects on macroscale properties. This thesis explores several strategies for nanomaterials design. The resulting nanocomposites are fully characterized with respect to their electrical and mechanical properties, by use of dielectric spectroscopy, tensile mechanical analysis, and electric breakdown tests. First, nanocomposites consisting of high permittivity rutile TiO2 nanoparticles dispersed in thermoplastic block copolymer SEBS (poly-styrene-coethylene-co-butylene-co-styrene) are shown to exhibit permittivity increases of up to 3.7 times, leading to 5.6 times improvement in electrostatic energy density, but with a trade-off in mechanical properties (an 8-fold increase in stiffness). The variation in both electrical and mechanical properties still allows for electromechanical improvement, such that a 27 % reduction of the electric field is found compared to the pure elastomer. Second, it is shown that the use of nanofiller conductive particles (carbon black (CB)) can lead to a strong increase of relative permittivity through percolation, however, with detrimental side effects. These are due to localized enhancement of the electric field within the composite, which leads to sharp reductions in electric field strength. Hence, the increase in permittivity does not make up for the reduction in breakdown strength in relation to stored electrical energy, which may prohibit their practical use. Third, a completely new approach for increasing the relative permittivity and electrostatic energy density of a polymer based on 'molecular composites' is presented, relying on chemically grafting soft π-conjugated macromolecules to a flexible elastomer backbone. Polarization caused by charge displacement along the conjugated backbone is found to induce a large and controlled permittivity enhancement (470 % over the elastomer matrix), while chemical bonding, encapsulates the PANI chains manifesting in hardly any reduction in electric breakdown strength, and hence resulting in a large increase in stored electrostatic energy. This is shown to lead to an improvement in the sensitivity of the measured electromechanical response (83 % reduction of the driving electric field) as well as in the maximum actuation strain (250 %). These results represent a large step forward in the understanding of the strategies which can be employed to obtain high permittivity polymer materials with practical use for electro-elastomer actuation. / Die Palette von elektro-mechanischen Aktuatoren, basierend auf dem Prinzip weicher dehnbarer Kondensatoren, scheint besonders für Anwendungen in der Medizin und für biomimetische Applikationen unbegrenzt. Diese Wandler zeichnen sich sowohl durch hohe Reversibilität bei großer mechanischer Deformation als auch durch ihre Flexibilität aus, wobei die mechanischen Deformationen durch elektrische Felder induziert werden. Die Notwendigkeit von hoher elektrischer Spannung zur Erzeugung dieser mechanischen Deformationen verzögert jedoch die technisch einfache und breite Markteinführung dieser Technologie. Diesem Problem kann durch eine gezielte Materialmodifikation begegnet werden. Eine Modifikation hat das Ziel, die relative Permittivität zu erhöhen, wobei die Flexibilität und die hohe elektrische Durchbruchsfeldstärke beibehalten werden sollten. Durch eine Materialmodifikation kann die Energiedichte des Materials bedeutend erhöht und somit die notwendige Betriebsspannung des Aktuators herabgesetzt werden. Eine Verbesserung der funktionalen Materialeigenschaften kann durch die Verwendung von Nanokompositen erzielt werden, welche die fundamentalen Eigenschaften der Nanopartikel, d.h. ein gutes Verhältnis von Oberfläche zu Volumen nutzen, um eine gezielte makroskopische Materialmodifikation zu bewirken. Diese Arbeit behandelt die Anwendung innovativer Strategien für die Erzeugung von Nanomaterialien mit hoher Permittivität. Die so erzeugten Materialien und deren relevante Aktuatorkenngrößen werden durch elektrische und mechanische Experimente vollständig erfasst. Mittels der klassischen Mischansätze zur Erzeugung von Kompositmaterialen mit hoher Permittivität konnte durch nichtleitendes Titaniumdioxid TiO2 (Rutile) in einem Thermoplastischen-Block-Co-Polymer SEBS (poly-styrene-co-ethylene-cobutylene-co-styrene) die Permittivität bereits um 370 % erhöht und die elektrische Energiedichte um 570 % gesteigert werden. Diese Veränderungen führten jedoch zu einem signifikanten Anstieg der Steifigkeit des Materials. Aufgrund der positiven Rückkopplung von elektrischen und mechanischen Eigenschaften des Kompositmaterials ermöglicht bereits dieser einfache Ansatz eine Verbesserung der Aktuation, bei einer 27 %-igen Reduktion der Aktuatorbetriebsspannung. Eine direkte Verwendung von leitfähigen Nanopartikeln kann ebenso zu einem Anstieg der relativen Permittivität beitragen, wobei jedoch die Leitfähigkeit dieser Nanopartikel bedeutende Wechselwirkungen verursacht, welche somit die Energiedichte des Materials negativ beeinflusst und die praktische Verwendung dieses Kompositsystems ausschließt. Als ein völlig neuer Ansatz zur Steigerung der relativen Permittivität und Energiedichte und abweichend vom klassischen Mischverfahren, wird die Herstellung eines "Molekularen Komposits", basierend auf einem chemischen Propfverfahren, präsentiert. In diesem Ansatz wird ein π-konjugiertes leitfähiges Polymer (PANI) an die Hauptkette des Elastomers der Polymermatrix gebunden. Die daraus resultierende Ladungsverteilung entlang der Elastomerhauptkette bewirkt eine 470 %-ige Steigerung der Permittivität des "Molekularen Komposits" im Vergleich zur Permittivität des unbehandelten Elastomermaterials. Aufgrund der Verkapselung der chemischen Bindungen der PANI-Kette entstehen kaum negative Rückwirkungen auf die elektrischen und mechanischen Eigenschaften des so erzeugten Komposits. Diese Materialeigenschaften resultieren in einem signifikanten Anstieg der Energiedichte des Materials. Das mittels dieses Verfahrens erzeugte Komposit zeigt sowohl eine Steigerung der Sensitivität der elektromechanischen Antwort (Reduktion des elektrischen Felds um 83 %) als auch eine bedeutende Steigerung der maximalen Aktuation (250 %). Die Ergebnisse und Ideen dieser Arbeit stellen einen wesentlichen Sprung im Verständnis zur Permittivitätssteigerung in Polymermaterialien dar und werden deshalb in der Erforschung und Entwicklung von Elastomeraktuatoren Beachtung finden.
2

Synthese und Charakterisierung lösungsprozessierbarer und vernetzbarer Methacrylat-Copolymere für den Einsatz als Dielektrika in der organischen Elektronik

Berndt, Andreas 24 October 2016 (has links) (PDF)
Der Einsatz von organischen Materialien, insbesondere von Polymeren, hat zahlreiche Vorteile gegenüber dem Einsatz klassischer Materialien in der Mikroelektronik. Zu diesen zählen Flexibilität, geringes Gewicht, Verarbeitbarkeit durch Verfahren aus Lösung bei Raumtemperatur ohne Notwendigkeit vakuumbasierter Prozesse zur Abscheidung und vieles mehr. Dies ermöglicht eine energie- und kosteneffiziente Herstellung elektronischer Bauteile wie organische Feldeffekttransistoren (OFETs) oder Leuchtdioden (OLEDs), welche durch Prozesse wie dem Rolle-zu-Rolle-Druckverfahren nicht länger auf kleine Flächen begrenzt sind. Zur Herstellung polymerbasierter OFETs mit optimiertem Eigenschaftsprofil sind neben innovativen Halbleitern vor allem auch neue Dielektrika mit verbesserten elektrischen Eigenschaften erforderlich, zu deren Entwicklung die vorliegende Arbeit beitragen sollte. Das häufig verwendete Polymethylmethacrylat ist für den Einsatz als Gate-Dielektrikum für die organische und gedruckte Elektronik nur bedingt geeignet. Es zeigt einige Nachteile wie eine mangelnde Stabilität gegenüber bestimmten organischen Lösungsmitteln, was zu Quellung oder Anlösen des Dielektrikums während des Aufbringens weiterer Schichten führen kann. Durch Copolymerisation von Methylmethacrylat mit funktionalisierten Comonomeren sollten die Probleme gelöst und optimierte Methacrylat-Copolymere entwickelt werden. Die Copolymere wurden über freie radikalische sowie RAFT-Polymerisation synthetisiert. Allen gemeinsam sind vernetzbare Comonomere, um die Lösungsmittelstabilität zu verbessern und somit die Durchbruchfeldstärke des Dielektrikums zu erhöhen. Als Vernetzer wurden 4-Benzoylphenylmethacrylat (BPMA) oder Propargylmethacrylat (PgMA) gewählt. BPMA ist UV-vernetzbar, Copolymere mit PgMA können in Gegenwart von mehrfunktionalen Aziden wie 1,3,5-Tris(azidomethyl)benzen (TAMB) durch Click-Reaktion thermisch vernetzt werden. Ein weiterer Aspekt ist die Erhöhung der relativen Permittivität des Dielektrikums zur Steigerung der Kapazität der dielektrischen Schicht, wodurch unter anderem die Betriebsspannung des Transistors reduziert werden kann. Dieses Ziel sollte durch Komposite mit BaTiO3-Nanopartikeln erreicht werden. Zusätzlich zur Steigerung der Permittivität kann dies durch Verringerung der Filmdicke realisiert werden, was jedoch vermehrt zu Leckströmen führen könnte. Neben den dielektrischen Materialeigenschaften spielt vor allem auch die Grenzfläche zwischen Dielektrikum und Halbleiter eine wesentliche Rolle. Um die Interaktionen an dieser zu verbessern, wurden Comonomere mit selbstorganisierenden Seitenketten in die Polymerstruktur eingebracht. Die Kombination dieser Dielektrika mit chemisch angepassten Halbleitern mit vergleichbaren Seitenkettenfunktionalitäten soll dazu führen, dass die beiden Komponenten durch die Seitenketten verstärkt miteinander wechselwirken. Monomersynthesen sowie anschließende Copolymerisationen waren in hohen Ausbeuten und ausreichenden Molmassen bezüglich der Copolymere erfolgreich. Die strahleninduzierte Vernetzung konnte durch systematische Untersuchungen optimiert und die thermische Vernetzung bei moderaten Temperaturen nachgewiesen werden. Die Vernetzbarkeit von Copolymeren mit selbstorganisierenden Seitenketten erwies sich als gehindert. Hierfür wurde ein Vorschlag zur Erhöhung der Flexibilität der Vernetzerseitenkette unterbreitet. Für die Copolymere P(MMA/BPMA) und P(MMA/PgMA) konnten die Durchbruchfeldstärken in Folge der Vernetzung von < 0.3 MV/cm für PMMA auf bis zu mehr als 5 MV/cm gesteigert werden. BaTiO3-Nanopartikel konnten durch geeignete Methoden erfolgreich synthetisiert werden. Durch Variation der Reaktionsbedingungen war eine gezielte Steuerung der Primärpartikelgröße möglich. So wurden Partikel der Größe < 10 nm, 26 nm und 55 nm realisiert. Die Dispersion der Partikel in organischen Lösungsmitteln sowie in der Polymermatrix war stark abhängig von der Größe der Primärartikel, der Oberflächenmodifikation sowie der Neigung zur Agglomeration. Modifizierte Partikel mit einem Durchmesser < 10 nm konnten sehr gut in Lösungsmitteln wie auch in der Polymermatrix dispergiert werden (Abbildung 2). Eine Steigerung der relativen Permittivität der Nanokomposite blieb jedoch aufgrund der zu geringen Größe der Primärpartikel aus. Darüber hinaus wurden deutlich schlechtere Durchbruchfeldstärken beobachtet. Copolymere mit der Fähigkeit zur Selbstorganisation sollten durch zwei Konzepte realisiert werden. Im ersten System führte die Polymerisation von x-[4-(4´-Cyanophenyl)phenoxy]alkylmethacrylaten mit Spacerlängen von x = 6 und x = 8 nur in Homopolymeren zu ausgeprägter Selbstorganisation. Copolymere mit 50 mol% waren weitgehend isotrop und wiesen zudem ungenügende dielektrische Eigenschaften auf. Das zweite System basiert auf semifluorierten Methacrylat-Copolymeren mit H10F10-Seitenketten (10 CH2- und 10 CF2-Gruppen). Diese zeigten schon ab einem Gehalt von circa 35 mol% gute Selbstorganisation und bildeten ein geordnetes alternierendes Schichtsystem aus Haupt- und Seitenketten im Bulk und in dünnen Filmen. Die dielektrischen Eigenschaften können mit denen bekannter fluorierter Polymerdielektrika wie CYTOP konkurrieren. Damit stehen die semifluorierten Copolymere zukunftsorientiert zur Kombination mit Halbleitern, welche die gleichen Seitenkettenfunktionalitäten tragen, bereit, um so durch starke Interaktionen zwischen Dielektrikum und Halbleiter die Grenzfläche zu optimieren. Mit thermisch vernetztem P(MMA/PgMA) konnten OFETs mit den Halbleitern Pentacen bzw. C60 erfolgreich hergestellt und vermessen werden. Beide Transistoren liefern gute und mit Literaturwerten vergleichbare Kenngrößen. Die Ladungsträgermobilitäten und Ion/Ioff-Verhältnisse betragen 0.3 cm²/Vs und 6.0x10^5 im Pentacen-basierten Transistor beziehungsweise 1.3 cm²/Vs und 4.4x10^5 im OFET mit dem Halbleiter C60. Damit konnte in dieser Arbeit die Steigerung der Durchbruchfeldstärke durch geeignete Vernetzung der Copolymere realisiert werden. Die thermische Vernetzung fand bei deutlich geringeren Temperaturen als zahlreiche in der Literatur beschriebene Reaktionen statt. Die Synthese und Modifizierung von BaTiO3-Nanopartikeln und auch die Bildung entsprechender PMMA-BaTiO3-Nanokomposite war erfolgreich, führte jedoch nicht wie erwartet zu einer Steigerung der relativen Permittivität der Dielektrika-Schichten. Vernetzbare und selbstorganisierende semifluorierte Methacrylat-Copolymere konnten polymerisiert und charakterisiert werden und stehen als innovative dielektrische Materialien für Untersuchungen in OFETs zur Verfügung. Das Copolymer P(MMA/PgMA) wurde zielführend in organischen Feldeffekttransistoren eingesetzt und führte zu guten elektrischen Eigenschaften der Bauteile.
3

Domain Formation in Ferroelectric Negative Capacitance Devices

Hoffmann, M., Slesazeck, S., Mikolajick, T. 29 November 2021 (has links)
The use of ferroelectric negative capacitance (NC) has been proposed as a promising way to reduce the power dissipation in nanoscale devices [1]. According to single-domain (SD) Landau theory, a hysteresis-free NC state in a ferroelectric might be stabilized in the presence of depolarization fields below a certain critical film thickness tF, SD. However, it is well-known that depolarization fields will cause the formation of domains in ferroelectrics to reduce the depolarization energy [2], which is rarely considered in the literature on NC [3]. The improvident use of SD Landau theory to model NC devices seems to be the main reason for the large discrepancy between experimental data and the current theory [4]. Here, we will show by simulation how anti-parallel domain formation can strongly limit the stability of the NC state in a metal-ferroelectric-insulator-metal (MFIM) structure, which is schematically shown in Fig. 1.
4

Synthese und Charakterisierung lösungsprozessierbarer und vernetzbarer Methacrylat-Copolymere für den Einsatz als Dielektrika in der organischen Elektronik

Berndt, Andreas 07 October 2016 (has links)
Der Einsatz von organischen Materialien, insbesondere von Polymeren, hat zahlreiche Vorteile gegenüber dem Einsatz klassischer Materialien in der Mikroelektronik. Zu diesen zählen Flexibilität, geringes Gewicht, Verarbeitbarkeit durch Verfahren aus Lösung bei Raumtemperatur ohne Notwendigkeit vakuumbasierter Prozesse zur Abscheidung und vieles mehr. Dies ermöglicht eine energie- und kosteneffiziente Herstellung elektronischer Bauteile wie organische Feldeffekttransistoren (OFETs) oder Leuchtdioden (OLEDs), welche durch Prozesse wie dem Rolle-zu-Rolle-Druckverfahren nicht länger auf kleine Flächen begrenzt sind. Zur Herstellung polymerbasierter OFETs mit optimiertem Eigenschaftsprofil sind neben innovativen Halbleitern vor allem auch neue Dielektrika mit verbesserten elektrischen Eigenschaften erforderlich, zu deren Entwicklung die vorliegende Arbeit beitragen sollte. Das häufig verwendete Polymethylmethacrylat ist für den Einsatz als Gate-Dielektrikum für die organische und gedruckte Elektronik nur bedingt geeignet. Es zeigt einige Nachteile wie eine mangelnde Stabilität gegenüber bestimmten organischen Lösungsmitteln, was zu Quellung oder Anlösen des Dielektrikums während des Aufbringens weiterer Schichten führen kann. Durch Copolymerisation von Methylmethacrylat mit funktionalisierten Comonomeren sollten die Probleme gelöst und optimierte Methacrylat-Copolymere entwickelt werden. Die Copolymere wurden über freie radikalische sowie RAFT-Polymerisation synthetisiert. Allen gemeinsam sind vernetzbare Comonomere, um die Lösungsmittelstabilität zu verbessern und somit die Durchbruchfeldstärke des Dielektrikums zu erhöhen. Als Vernetzer wurden 4-Benzoylphenylmethacrylat (BPMA) oder Propargylmethacrylat (PgMA) gewählt. BPMA ist UV-vernetzbar, Copolymere mit PgMA können in Gegenwart von mehrfunktionalen Aziden wie 1,3,5-Tris(azidomethyl)benzen (TAMB) durch Click-Reaktion thermisch vernetzt werden. Ein weiterer Aspekt ist die Erhöhung der relativen Permittivität des Dielektrikums zur Steigerung der Kapazität der dielektrischen Schicht, wodurch unter anderem die Betriebsspannung des Transistors reduziert werden kann. Dieses Ziel sollte durch Komposite mit BaTiO3-Nanopartikeln erreicht werden. Zusätzlich zur Steigerung der Permittivität kann dies durch Verringerung der Filmdicke realisiert werden, was jedoch vermehrt zu Leckströmen führen könnte. Neben den dielektrischen Materialeigenschaften spielt vor allem auch die Grenzfläche zwischen Dielektrikum und Halbleiter eine wesentliche Rolle. Um die Interaktionen an dieser zu verbessern, wurden Comonomere mit selbstorganisierenden Seitenketten in die Polymerstruktur eingebracht. Die Kombination dieser Dielektrika mit chemisch angepassten Halbleitern mit vergleichbaren Seitenkettenfunktionalitäten soll dazu führen, dass die beiden Komponenten durch die Seitenketten verstärkt miteinander wechselwirken. Monomersynthesen sowie anschließende Copolymerisationen waren in hohen Ausbeuten und ausreichenden Molmassen bezüglich der Copolymere erfolgreich. Die strahleninduzierte Vernetzung konnte durch systematische Untersuchungen optimiert und die thermische Vernetzung bei moderaten Temperaturen nachgewiesen werden. Die Vernetzbarkeit von Copolymeren mit selbstorganisierenden Seitenketten erwies sich als gehindert. Hierfür wurde ein Vorschlag zur Erhöhung der Flexibilität der Vernetzerseitenkette unterbreitet. Für die Copolymere P(MMA/BPMA) und P(MMA/PgMA) konnten die Durchbruchfeldstärken in Folge der Vernetzung von < 0.3 MV/cm für PMMA auf bis zu mehr als 5 MV/cm gesteigert werden. BaTiO3-Nanopartikel konnten durch geeignete Methoden erfolgreich synthetisiert werden. Durch Variation der Reaktionsbedingungen war eine gezielte Steuerung der Primärpartikelgröße möglich. So wurden Partikel der Größe < 10 nm, 26 nm und 55 nm realisiert. Die Dispersion der Partikel in organischen Lösungsmitteln sowie in der Polymermatrix war stark abhängig von der Größe der Primärartikel, der Oberflächenmodifikation sowie der Neigung zur Agglomeration. Modifizierte Partikel mit einem Durchmesser < 10 nm konnten sehr gut in Lösungsmitteln wie auch in der Polymermatrix dispergiert werden (Abbildung 2). Eine Steigerung der relativen Permittivität der Nanokomposite blieb jedoch aufgrund der zu geringen Größe der Primärpartikel aus. Darüber hinaus wurden deutlich schlechtere Durchbruchfeldstärken beobachtet. Copolymere mit der Fähigkeit zur Selbstorganisation sollten durch zwei Konzepte realisiert werden. Im ersten System führte die Polymerisation von x-[4-(4´-Cyanophenyl)phenoxy]alkylmethacrylaten mit Spacerlängen von x = 6 und x = 8 nur in Homopolymeren zu ausgeprägter Selbstorganisation. Copolymere mit 50 mol% waren weitgehend isotrop und wiesen zudem ungenügende dielektrische Eigenschaften auf. Das zweite System basiert auf semifluorierten Methacrylat-Copolymeren mit H10F10-Seitenketten (10 CH2- und 10 CF2-Gruppen). Diese zeigten schon ab einem Gehalt von circa 35 mol% gute Selbstorganisation und bildeten ein geordnetes alternierendes Schichtsystem aus Haupt- und Seitenketten im Bulk und in dünnen Filmen. Die dielektrischen Eigenschaften können mit denen bekannter fluorierter Polymerdielektrika wie CYTOP konkurrieren. Damit stehen die semifluorierten Copolymere zukunftsorientiert zur Kombination mit Halbleitern, welche die gleichen Seitenkettenfunktionalitäten tragen, bereit, um so durch starke Interaktionen zwischen Dielektrikum und Halbleiter die Grenzfläche zu optimieren. Mit thermisch vernetztem P(MMA/PgMA) konnten OFETs mit den Halbleitern Pentacen bzw. C60 erfolgreich hergestellt und vermessen werden. Beide Transistoren liefern gute und mit Literaturwerten vergleichbare Kenngrößen. Die Ladungsträgermobilitäten und Ion/Ioff-Verhältnisse betragen 0.3 cm²/Vs und 6.0x10^5 im Pentacen-basierten Transistor beziehungsweise 1.3 cm²/Vs und 4.4x10^5 im OFET mit dem Halbleiter C60. Damit konnte in dieser Arbeit die Steigerung der Durchbruchfeldstärke durch geeignete Vernetzung der Copolymere realisiert werden. Die thermische Vernetzung fand bei deutlich geringeren Temperaturen als zahlreiche in der Literatur beschriebene Reaktionen statt. Die Synthese und Modifizierung von BaTiO3-Nanopartikeln und auch die Bildung entsprechender PMMA-BaTiO3-Nanokomposite war erfolgreich, führte jedoch nicht wie erwartet zu einer Steigerung der relativen Permittivität der Dielektrika-Schichten. Vernetzbare und selbstorganisierende semifluorierte Methacrylat-Copolymere konnten polymerisiert und charakterisiert werden und stehen als innovative dielektrische Materialien für Untersuchungen in OFETs zur Verfügung. Das Copolymer P(MMA/PgMA) wurde zielführend in organischen Feldeffekttransistoren eingesetzt und führte zu guten elektrischen Eigenschaften der Bauteile.
5

Dielectric Material Characterization up to Terahertz Frequencies using Planar Transmission Lines

Seiler, Patrick Sascha 07 May 2019 (has links)
With increasing frequency up to the THz frequency range and the desire to optimize performance of modern applications, precise knowledge of the dielectric material parameters of a substrate being used in a planar application is crucial: High performance of the desired device or circuit can often be achieved only by properly designing it, using specific values for the material properties. Especially the integration of planar devices for very broadband applications at high frequencies often demands specific dielectric properties such as a low permittivity, dispersion and loss, assuring a predictable performance over a broad frequency range. Therefore, material characterization at these frequencies is of interest to the developing THz community, although not a lot of methods suitable in terms of frequency range and measurement setup exist yet. In this work, a comprehensive method for dielectric material parameter determination from S-Parameter measurements of unloaded and loaded planar transmission lines up to THz frequencies is developed. A measurement setup and methodology based on wafer prober measurements is established, which allows for characterization of planar substrates and bulk material samples alike. In comparison with most existing methods, no specialized measurement cell or cumbersome micro-machining of material samples is necessary. The required theory is developed, including a discussion of effective parameter extraction methods from measurement, identification of and correction for undesired transmission line effects such as higher order modes, internal inductance and surface roughness, as well as mapping and modelling procedures based on physical permittivity models and electromagnetic simulations. Due to the general approach and modular structure of the developed method, new models to cover additional aspects or enhance its performance even further are easily implementable. Measurement results from 100 MHz to 500 GHz for planar substrates and from 100 MHz to 220 GHz for bulk material samples emphasize the general applicability of the developed method. It is inherently broadband, while the upper frequency limit is only subject to the fabrication capabilities of modern planar technology (i.e. minimum planar dimensions of transmission lines and height of substrate) and thus is easily extendable to higher frequencies. Furthermore, the developed method is not bound to a specific measurement setup and applicable with other measurement setups as well, as is exemplary presented for a free-space setup using antennas, enabling measurement of large, flat material samples not fitting on the wafer prober. Several substrate and bulk material samples covering a wide range of permittivities and material classes are characterized and compared with reference values from literature and own comparison measurements. The uncertainties for both planar substrate as well as bulk material sample measurements are estimated with a single-digit percentage. For all measurements, the order of magnitude of the dielectric loss tangent can be determined, while the lower resolution boundary for bulk material sample measurements is estimated to 0.01. Concerning measurements in the wafer prober environment, fixture-related issues are a main cause of measurement uncertainty. This topic is discussed as well as the design of on-wafer probe pads and custom calibration standards required for broadband operation at THz frequencies. / Mit zunehmender Erschließung des THz-Frequenzbereichs und der zugehörigen Optimierung moderner Anwendungen ist eine genaue Kenntnis der dielektrischen Materialparameter verwendeter planarer Substrate unabdingbar: Eine hohe Performance angestrebter Bauteile oder Schaltungen kann nur durch einen präzisen Entwurf sichergestellt werden, wofür spezifische Werte für die Materialeigenschaften bekannt sein müssen. Insbesondere die Integration planarer Bauelemente für sehr breitbandige Anwendungen bei hohen Frequenzen bedingt spezifische dielektrische Materialeigenschaften, wie bspw. geringe Permittivität, Dispersion und Verluste, sodass eine vorhersagbare Performance über einen breiten Frequenzbereich sichergestellt werden kann. Materialcharakterisierung bei diesen Frequenzen ist folglich von Interesse für die sich entwickelnde THz-Forschungslandschaft, wenngleich derzeit kaum Verfahren existieren, die geeignet in Bezug auf den Frequenzbereich oder Messaufbau sind. Im Rahmen dieser Arbeit wird ein umfassendes Verfahren zur Bestimmung der dielektrischen Materialparameter aus S-Parameter-Messungen unbelasteter und belasteter planarer Leitungen bis in den THz-Bereich entwickelt. Ein Messaufbau mitsamt Messmethodik basierend auf Wafer Prober-Messungen wird entworfen, welcher die Charakterisierung von planaren Substraten und losen Materialproben ermöglicht. Im Vergleich zu existierenden Verfahren ist weder eine spezielle Messzelle noch eine umständliche Mikrobearbeitung der Materialproben notwendig. Die Entwicklung der hierfür notwendigen Theorie beinhaltet eine Diskussion von Methoden zur Extraktion effektiver Parameter aus Messungen, die Identifikation und Korrektur unerwünschter Leitungseffekte wie bspw. höherer Moden, interner Induktivität und Oberflächenrauhigkeit sowie Zuordnungs- und Modellierungsverfahren basierend auf physikalischen Permittivitätsmodellen und elektromagnetischen Simulationen. Durch den allgemeinen, modularen Ansatz des entwickelten Verfahrens lassen sich neue Modelle zur Berücksichtigung zusätzlicher Effekte oder weiteren Verbesserung der Performance einfach einarbeiten. Messergebnisse von 100 MHz bis 500 GHz für planare Substrate und von 100 MHz bis 220 GHz für lose Materialproben unterstreichen die allgemeine Anwendbarkeit des entwickelten Verfahrens. Es ist inhärent breitbandig, wobei eine obere Frequenzgrenze nur durch die Fertigungstoleranzen moderner planarer Technologien gegeben ist (minimale Leitungsdimensionen und Substrathöhe), sodass es einfach zu höheren Frequenzen hin erweiterbar ist. Weiterhin ist das entwickelte Verfahren nicht an einen bestimmten Messaufbau gebunden und auch mit weiteren Aufbauten anwendbar, wie beispielhaft an einem Freiraum-Aufbau mit Antennen präsentiert wird. Eine Vielzahl planarer Substrate und loser Materialproben, die ein weites Spektrum an Permittivitäten und Materialklassen abdecken, werden charakterisiert und mit Referenzdaten aus der Literatur sowie eigenen Messungen verglichen. Die Messunsicherheiten der Permittivitätsmessungen werden im einstelligen Prozentbereich abgeschätzt und der dielektrische Verlustwinkel kann in seiner Größenordnung bestimmt werden. Aufbaubezogene Einflüsse als eine Hauptursache für Messunsicherheiten am Wafer Prober werden adressiert, ebenso wie der Entwurf von On-Wafer Probe Pads und selbsterstellter Kalibrierstandards, die notwendig sind für den Einsatz bei THz-Frequenzen.
6

Untersuchung des Anwendungspotenzials der Hochfrequenzwirbelstrommesstechnik zur Charakterisierung dielektrischer Eigenschaften von Epoxidharzen und Faserverbundmaterialien

Gäbler, Simone 09 January 2018 (has links) (PDF)
Die dielektrischen Eigenschaften, also die Interaktion mit elektrischen Feldern, sind ein wichtiger Qualitätsparameter der Matrix in Faserverbundmaterialien und allgemein in Harzen. Sie werden bisher mit Hilfe von kapazitiven Verfahren oder Hochfrequenzverfahren wie z. B. der Mikrowellentechnik gemessen. Allerdings können beide Verfahren nicht an elektrisch leitfähigen Materialien wie Kohlenstofffaserverstärkten Kunststoffen (CFK) eingesetzt werden und auch bei der Anwendung der Methoden an Kunststoffen oder elektrisch isolierenden Faserverbundmaterialien gibt es Nachteile. So benötigt die kapazitive Messtechnik meist eine spezielle Probenpräparation für quantitative Messungen und erreicht eine vergleichsweise schlechte Ortsauflösung beim Permittivitätsmapping. Die vorliegende Arbeit widmet sich daher der Untersuchung einer alternativen, in diesem Kontext neuen Methode zur Charakterisierung dielektrischer Eigenschaften: Die Hochfrequenzwirbelstrommesstechnik, welche bisher zur Messung der elektrischen Leitfähigkeit und magnetischen Permeabilität genutzt wird, wird theoretisch und praktisch hinsichtlich ihres Anwendungspotentials zur Permittivitätsmessung an Epoxidharzen und Faserverbundwerkstoffen diskutiert. Dabei werden zuerst Grundlagen wie Anwendungsfelder für die Nutzung dielektrischer Eigenschaften von Harzen und Verbundwerkstoffen zur Qualitätssicherung bzw. gängige Messverfahren erläutert. Anschließend wird theoretisch gezeigt, warum dielektrische Eigenschaften auf das Hochfrequenzwirbelstrom (HFWS)-Signal wirken. Dabei werden sowohl die Maxwell-Gleichungen genutzt, als auch Finite Elemente (FE)-Simulationen. Der Schwerpunkt der Forschungsarbeit liegt dann auf der experimentellen Untersuchung der Permittivitätsmessung mittels HFWS. Es werden verschiedene Anwendungsfälle betrachtet: von zeitlich kontinuierlichen Permittitivitätsänderungen (am Beispiel der Aushärtung von Epoxidharzen), über lokale Permittivitätsabweichungen (in Folge von Defekten, Textureigenschaften oder thermischen Überlasten) bis hin zu quantitativen Permittivitätsmessungen (zur Materialcharakterisierung bzw. Alterungsuntersuchung). Dabei kann gezeigt werden, dass es möglich ist, die Permittivität von Faserverbundwerkstoffen und Epoxidharzen mittels HFWS zu charakterisieren, selbst wenn das zu prüfende Material elektrisch nicht leitfähig ist.
7

Untersuchung des Anwendungspotenzials der Hochfrequenzwirbelstrommesstechnik zur Charakterisierung dielektrischer Eigenschaften von Epoxidharzen und Faserverbundmaterialien

Gäbler, Simone 08 June 2017 (has links)
Die dielektrischen Eigenschaften, also die Interaktion mit elektrischen Feldern, sind ein wichtiger Qualitätsparameter der Matrix in Faserverbundmaterialien und allgemein in Harzen. Sie werden bisher mit Hilfe von kapazitiven Verfahren oder Hochfrequenzverfahren wie z. B. der Mikrowellentechnik gemessen. Allerdings können beide Verfahren nicht an elektrisch leitfähigen Materialien wie Kohlenstofffaserverstärkten Kunststoffen (CFK) eingesetzt werden und auch bei der Anwendung der Methoden an Kunststoffen oder elektrisch isolierenden Faserverbundmaterialien gibt es Nachteile. So benötigt die kapazitive Messtechnik meist eine spezielle Probenpräparation für quantitative Messungen und erreicht eine vergleichsweise schlechte Ortsauflösung beim Permittivitätsmapping. Die vorliegende Arbeit widmet sich daher der Untersuchung einer alternativen, in diesem Kontext neuen Methode zur Charakterisierung dielektrischer Eigenschaften: Die Hochfrequenzwirbelstrommesstechnik, welche bisher zur Messung der elektrischen Leitfähigkeit und magnetischen Permeabilität genutzt wird, wird theoretisch und praktisch hinsichtlich ihres Anwendungspotentials zur Permittivitätsmessung an Epoxidharzen und Faserverbundwerkstoffen diskutiert. Dabei werden zuerst Grundlagen wie Anwendungsfelder für die Nutzung dielektrischer Eigenschaften von Harzen und Verbundwerkstoffen zur Qualitätssicherung bzw. gängige Messverfahren erläutert. Anschließend wird theoretisch gezeigt, warum dielektrische Eigenschaften auf das Hochfrequenzwirbelstrom (HFWS)-Signal wirken. Dabei werden sowohl die Maxwell-Gleichungen genutzt, als auch Finite Elemente (FE)-Simulationen. Der Schwerpunkt der Forschungsarbeit liegt dann auf der experimentellen Untersuchung der Permittivitätsmessung mittels HFWS. Es werden verschiedene Anwendungsfälle betrachtet: von zeitlich kontinuierlichen Permittitivitätsänderungen (am Beispiel der Aushärtung von Epoxidharzen), über lokale Permittivitätsabweichungen (in Folge von Defekten, Textureigenschaften oder thermischen Überlasten) bis hin zu quantitativen Permittivitätsmessungen (zur Materialcharakterisierung bzw. Alterungsuntersuchung). Dabei kann gezeigt werden, dass es möglich ist, die Permittivität von Faserverbundwerkstoffen und Epoxidharzen mittels HFWS zu charakterisieren, selbst wenn das zu prüfende Material elektrisch nicht leitfähig ist.
8

Impedimetric Sensor System for Edible Oil Quality Assessment

Fendri, Ahmed 18 March 2020 (has links)
The repeated usage of frying oil is hazardous due to the degradation caused by chemical reactions, which happen while heating. The total polar compounds and the free fatty acids are the main two chemical parameters affected by frying. These parameters increase significantly with the use of oil for frying and are reported as reasons for causing serious illnesses like heart diseases. For this purpose, sensor systems for oil quality assessment are necessary. In fact, changes of the composition due to frying leads to variation of its dielectric parameters. This can be measured using a capacitive sensor and the measurement of its impedance change. The main challenge thereby is that the impedance changes are very small and stray capacitances have a big influence on the measurements. In this context, this work proposes a sensor system with high accuracy able to detect the small changes that occur in the resistance and capacitance under influence of stry capacitances. Theoretical and simulation studies are carried out for different cap acitive sensors as well as meas urement procedures of its cornp lex imp edance. The sensor should provide a high sensitivity to relative perrnittivity and the electrical conductiv ity, and at the same time a small size and a high reproducibility. Interdigital electrodes sensor with a suitable design fulfils all these requirements. A deep consideration of stray capacitances is needed to realize an accurate sensor system. For t hese reasons, the design of the measurement circuit is crucial within this work. We propose, a measurernent circuit based on a combinat ion of the method of capacitance to voltage conversion and the phase shift measurement method. By cornbining both rnethods together it is possible to rneasure accurate ly the complex irnpedance of edible oil. Experimental results show that measurement systern is capable to detect small changes of dielectric parameters, which are correlated to the chemical parameters. / Die mehrfach wiederholte Verwendung von Frittieröl ist aufgrund der Qualitätsver­ schlechterung, die während des Erhitzens auftreten durch chemische Reaktionen verursacht wird, gefährlich für die Gesundheit. Die totale polaren Kompon enten und die freien Fettsäuren sind die zwei wichtigsten chemischen Komponenten, die wesentlich durch das Braten beeinflusst werden. Diese Komponenten erhöhen sich signifikant mit der Wiederverwendung von Bratöl und verursachen u. a. ernste Herzkrankheiten. Diese Arbeit zielt darauf hin, ein mobiles, kostengünstiges, einfach zu verwenden­ des Sensorsystem für die Abschätzung der Ölqualität zu entwickeln. Das System charakterisiert die Veränderung der elektrischen Parameter des Öls durch Messung der Änderung seiner komplexen elektrischen Eigenschaft en. In dieser Arbeit wurde ein Sensorelement mit interdigitalen Elektroden entwickelt, der eine hohe Empfindlichkeit auf die relative Permittivität und die elektrischen Leitfähigkeit des Öls hat und dabei einer hohe Reproduzierbarkeit erzielen kann. Es wird ein Messverfahren vorgeschlagen, das auf der Wandlung in einer Spannung und einer Phasenverschiebung basiert. Sowohl durch theoretische Überlegungen als auch durch Simulationen konnte belegt werden, dass die Kombination beider Metho­ den eine akkurate Messung der Komplexem Imped anz hochdielektrischer Materia lien ermöglichen kann. Experiment elle Ergebnisse zeige n, dass das Messsystem in der Lage ist , kleine Änderungen der dielektrischen Parameter zu erfassen, die mit den chemischen Ölparamtern stark korrelieren.
9

Elektromagnetisch modifizierte Materialien für Radarsensor-Abdeckungen

Bonfig, Teresa 23 December 2022 (has links)
Bei der Anwendung von Radarsensoren zur Fahrzeug-Umfelderfassung müssen verwendete Blenden (Radome), welche den Sensor vor externen Einflüssen schützen und das Fahrzeugdesign unterstützen, die hochfrequente elektromagnetische Welle ohne Beeinflussung transmittieren. Allerdings werden beim Durchstrahlen eines Bauteils unterschiedliche Anteile der Welle absorbiert, reflektiert oder transmittiert. Mit dem Ziel die Transmission von Materialien zu erhöhen, werden im Rahmen dieser Arbeit die Einflüsse auf den Materialparameter Permittivität von Kunststoffen und Lacken untersucht. Dadurch kann auch die praktische Umsetzbarkeit der theoretisch hergeleiteten Kompensationsmethoden für hochreflektierende Lacke nachgewiesen werden. Zur Absicherung der Radarfunktion müssen darüber hinaus auch Einflussfaktoren aus Design, Fertigungsprozess und Umgebung bekannt sein.:1 Einleitung 2 Problemstellung und Zielsetzung 3 Stand der Wissenschaft 4 Elektromagnetische Eigenschaften von Kunststoffen 5 Einfluss elektromagnetischer Eigenschaften von Lacken 6 Radome im Gesamtaufbau 7 Zusammenfassung und Ausblick Anhang / When radar sensors are used for vehicle environment scanning, the cover (radome) used to protect the sensor from external influences and support the vehicle design must transmit the high-frequency electromagnetic wave without interference. However, when the wave passes through a component it is absorbed, reflected or transmitted. The range of the radar sensor can be reduced, the sensor can be blinded by reflections and inhomogeneous reflection distributions can lead to angular errors. To increase the transmission of materials, the influences on the material parameter permittivity of plastics and paints are investigated. Furthermore, the practical feasibility of the theoretically derived compensation methods for highly reflective paints can be demonstrated. To ensure the radar function, influencing factors, including the design, the manufacturing process and environment, must also be known.:1 Einleitung 2 Problemstellung und Zielsetzung 3 Stand der Wissenschaft 4 Elektromagnetische Eigenschaften von Kunststoffen 5 Einfluss elektromagnetischer Eigenschaften von Lacken 6 Radome im Gesamtaufbau 7 Zusammenfassung und Ausblick Anhang

Page generated in 0.0645 seconds