• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • Tagged with
  • 31
  • 31
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On the Factors Influencing the Stability of Phases in the Multiferroic System BiFeO3-PbTiO3

Kothai, V January 2015 (has links) (PDF)
Rhombohedral perovskite BiFeO3 is a single phase multiferroic compound exhibiting both magnetic (Neel temperature ~370˚C) and ferroelectric (Curie point ~840˚C) ordering well above the room temperature. Ferroelectricity in BiFeO3 is due to stereochemically active 6slone pair in Biion which causes large relative displacements of Bi and O ions along the [111] direction. Long range spiral modulation of the canted antiferromagnetic spin arrangement in Feeffectively cancels the macroscopic magnetization due to Dzyaloshinskii–Moriya interaction and thereby prevents linear magneto-electric effect. Synthesizing dense pure BiFeO3 by conventional solid state method is difficult due to the formation of thermodynamically stable secondary phases such as Bi2Fe4O9, Bi25FeO39 and Bi46Fe2O72. To stabilize the perovskite phase and to suppress the cycloid several groups have adopted different strategies such as thin film growth, different synthesis methods and chemical substitution. Of the various substitutions reported in the literature, PbTiO3 substitution has shown very interesting features, such as (i) unusually large tetragonality (c/a~1.19), (ii) formation of morphotropic phase boundary (MPB) and (iii) high curie point Tc~650C. MPB ferroelectric systems such as lead zirconate titanate (PZT) are known to exhibit high piezoelectric response due to the coupling between strain and polarization. Hence the existence of magnetic ordering in BiFeO3-PbTiO3 offers an interesting scenario where polarization, strain and magnetization may couple together. The high Curie point also makes the system an interesting candidate for high temperature piezoelectric application. However its potential as a high temperature piezoelectric material has not been realized yet. A detailed review of literature suggests a lack of clear agreement with regards to the composition range of the reported MPB itself. Different research groups have reported different composition range of MPB for this system even for almost similar synthesis conditions. The present thesis deals with broadly two parts, firstly with the preparation of pure BiFeO3 by co-precipitation and hydrothermal methods and its thermal stability and secondly resolving the cause of discrepancy in range of MPB reported in BiFeO3-PbTiO3 solid solution. Detailed examination of this system (BiFeO3-PbTiO3) around the reported MPB composition by temperature dependent X-ray, electron and neutron diffraction techniques, in conjunction with a systematic correlation of sintering temperature and time with microstructural and phase formation behavior revealed the fact that the formation of MPB or the single ferroelectric phase is critically dependent on the grain size. This phenomenon is also intimately related to the abnormal grain growth in this system. Chapter 1 gives the brief overview of the literature on the topics relevant to the present study. The literature survey starts with a brief introduction about the perovskite oxides; their ferroelectric, magnetic and multiferroic properties were discussed in further sections. A brief outline on the grain growth mechanism is described. An overview of BiFeO3 and various synthesis methods, different chemical substitutions and their effect on properties are provided. A brief review of published literature on BiFeO3-PbTiO3 solid solution and its properties is also presented. Chapter 2 deals with the synthesis of pure BiFeO3, heat treatment and characterisation. BiFeO3 was synthesised by (a) co-precipitation and (b) hydrothermal methods. In co-precipitation method, calcination of precipitate at different temperature resulted in the formation of BiFeO3 along with secondary phases (Bi2Fe4O9 and Bi24FeO39). The optimum calcination temperature to prepare pure BiFeO3 was found to be 560C. The synthesized pure BiFeO3 exhibits weak ferromagnetic hysteresis at room temperature, the degree of which increases slightly at 10K (-263C). The hydrothermal treatment was carried out in (a) carbonate and (b) hydroxide precipitates with KOH as mineralizer. BiFeO3 prepared using hydroxide precipitate was stable till 800C whereas with carbonate precipitate it was stable only till 600C. Chapter 3 deals with the stability of phases in (1-x)BiFeO3 -(x)PbTiO3 solid solution. Samples prepared by conventional solid state route sometimes remain as dense pellet and on certain occasions it disintegrate completely into powder observed after sintering. Irrespective of the composition, sintering time and temperature, powder X-ray Diffraction (XRD) pattern of the survived pellet (crushed into powder) shows coexistence of rhombohedral (R3c) and tetragonal (P4mm) phases and the disintegrated powder (without crushing) show 100% tetragonal (P4mm) phase. Very high spontaneous tetragonal strain (c/a-1) ~0.19 at MPB is believed to be the origin for disintegration. But in all the survived pellets at least a minor fraction of rhombohedral phase (5-7%) is present. Systematic sintering studies with the time and temperature shows, decreasing the sintering temperature and time will increase the lifetime of the pellet and by increasing the sintering temperature and time the pellet will disintegrate. In this work we have conclusively proved that the wide composition range of MPB reported in the literature is due to kinetic arrest of the metastable rhombohedral phase and that if sufficient temperature and time is given, the metastable phase disappears. The suppression/formation of minor rhombohedral phase is expected due to the play of local kinetic factors during the transformation process. This makes the system behave in an unpredictable way with regard to the fraction of rhombohedral phase that is observed at room temperature. A systematic X-ray and neutron powder diffraction study of the giant tetragonality multiferroic (1-x)BiFeO3 -(x)PbTiO3 have shown that the compositions close to the morphotropic phase boundary of this system present two different structural phase transition scenarios on cooling from the cubic phase: (i) Pm3m P4mm(T2)+P4mm(T1) P4mm (T1) and (ii) Pm3m P4mm(T2) + P4mm(T1) + R3c P4mm (T1) + R3c. The comparatively larger tetragonality of the T1 phase as compared to the coexisting isostructural T2 phase is shown to be a result of significantly greater degree of overlap of the Pb/Bi-6s and Ti/Fe-3d with the O-2p orbitals as compared to that in the T2 phase. High temperature electron diffraction studies show that the metastable rhombohedral phase is present in the cubic matrix well above the Curie point as nuclei. Life time of the metastable R3c nuclei is very sensitive to composition and temperature, and nearly diverges at x → 0.27. MPB like state appears only if the system is cooled before the metastable R3c nuclei could vanish. Issue of the metastable rhombohedral state is developed further in Chapter 4. A one-to-one correlation was found between the grain size and phase formation behavior. Fine grained (~1µm) microstructure (usually pellets) shows phase coexistence (R3c+P4mm) and the disintegrated coarse grains (~10µm) show tetragonal (P4mm) phase. Microstructural analysis revealed the disintegration was caused by abnormal grain growth along with the disappearance of metastable rhombohedral phase. Abnormal grain growth starts at the periphery/crack i.e., at the free surface and move towards the canter of the pellet. Size reduction of disintegrated coarse grains (~10µm) to fine grains (~1µm) by crushing the sample showed that the system switching form pure tetragonal (P4mm) state to the MPB state comprising of tetragonal and rhombohedral phases (R3c+P4mm). In another approach the smaller sized particles of x=0.20 were synthesized by sol gel method. It was reported that in conventional solid state route x=0.20 exhibits pure rhombohedral phase. The sol-gel sample calcined at 500C (particle size ~15nm) stabilizes tetragonal metastable phase along with the stable rhombohedral phase, the morphotropic phase boundary state. Samples calcined at higher temperature, 800C (particle size ~50nm) also showed stable rhombohedral phase. Ferromagnetic behavior was observed in the sample having phase coexistence and the sample with pure rhombohedral phase showed antiferromagnetic behavior. Hence this material is a promising candidate which can be tuned to exhibit different behavior just by adopting different grain size. Chapter 5 deals with the magnetic structure of (1-x)BiFeO3 -xPbTiO3 solid solution with change in composition and temperature. Magnetic structure was studied using powder neutron diffraction in the composition range x=0.05 -0.35. Rietveld analysis was carried out for the nuclear and magnetic phases, by considering R3c phase for the nuclear structure. To account for the magnetic Bragg peak at d=4.59Å, three antiferromagnetic models were considered for the magnetic structure: (i) helical spin arrangement as in BiFeO3, (ii) commensurate G-type antiferromagnetic ordering with moments in the a-b plane (of the hexagonal cell), and (iii) commensurate G-type ordering with moments parallel to the c-axis (of the hexagonal cell). The third model was found to be suitable to explain the magnetic peak accurately and the better fitting of magnetic peak was observed in this model compared to others. At room temperature the MPB compositions have rhombohedral and tetragonal nuclear phases along with the rhombohedral magnetic phase. Addition of PbTiO3 in BiFeO3 not only changes the magnetic structure but also reduces the magnetic moment due to the substitution of Ti in Fesite. High temperature neutron diffraction studies reveal the magnetic transition at ~300C for x=0.20, ~95C for x=0.27 and ~150C for x=0.35. The Neel temperature observed in neutron diffraction studies were also confirmed by DSC and by temperature dependent dielectric studies. For x=0.20, anomalous variation in the lattice parameters and the octahedral tilt angle was observed across the magnetic transition temperature. In the magnetic phase, the c-parameter was contracted and the octahedral tilt angle slightly increased. This result suggests a coupling between spin, lattice and structural degrees of freedom around the transition temperature. Temperature dependent powder neutron diffraction study at low temperature from 300K (27C) to 4K (-269C) in x=0.35 shows the evolution of tetragonal magnetic phase at 200K (-73C) whose intensity is increasing with decrease in temperature. Below 200K, x=0.35 has rhombohedral and tetragonal magnetic and nuclear phases. While in x=0.27 at low temperature, rhombohedral magnetic and nuclear phases are present along with the tetragonal nuclear phase alone (the tetragonal magnetic phase is absent). We propose this discrepancy in the Neel temperature and the magnetic phase formation can be due to the probabilistic nature of the existence of metastable rhombohedral phase which was discussed earlier.
12

SYNTHESIS, SINTERING, AND ELECTRONIC CONDUCTIVITY STUDIES OF MEDIUM- AND HIGH-ENTROPY PEROVSKITE OXIDES

Gajjala, Sai Ram 01 May 2023 (has links) (PDF)
The application of the entropy concept to stabilize oxide systems opens the possibility of discovering new materials with unique structural and functional properties. High-entropy alloys and oxides, which are based on the entropy stabilization concept and composed of multi-principal elements, have the potential to tailor structural and functional properties to meet specific needs. The study of lanthanum-based perovskite materials that benefit from the entropy stabilization approach is a promising area of research.However, the inherent randomness of multi-principal elements presents new challenges, making it difficult to predict their behavior. To understand these difficulties, we have initiated a methodical investigation of La-based medium- and high-entropy perovskite oxides. This study focuses on the synthesis, characterization, sintering mechanism, and electrical conductivity properties of nine La1-xCax(A1/3, B1/3, C1/3)O3 medium-entropy perovskite oxide systems (A, B, and C = three combination of Cr or Co or Fe or Ni or Mn) and one La1-xCax(Cr0.2Co0.2Fe0.2Ni0.2Mn0.2)O3 high-entropy perovskite oxide system (for x = 0.1 to 0.3). This research aims to provide better understanding of: (1) synthesis process, (2) temperature of single-phase formation, (3) the impact of various combinations of multiple B-site transitional elements and Ca doping on crystal structure, and microstructure (4) sintering mechanism and (5) electrical conductivity properties.
13

Development of alternative cathodes for intermediate temperature solid oxide fuel cells

Kim, Junghyun 05 November 2009 (has links)
text
14

New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

Bukhari, Syed Munawer 09 September 2011 (has links)
This work involved the development of new perovskite oxides based on SmFeO3 and testing their performances as sensors for reducing gases (H2, CO & CH4) and as anode materials for dry methane oxidation in solid oxide fuel cells. The new perovskite oxide materials with formula Sm0.95Ce0.05Fe1-xMxO3-δ (M= Co, Ni & Cr) were synthesized by a sol gel method using citric acid as a complexing agent. The resulting materials were characterized by using a battery of techniques including XRD, XRF, XPS, SEM and electrochemical methods. Sensing experiments revealed that both cobalt doped and Cr doped materials can detect H2, CO and CH4 in air at different temperatures including room temperature. The Ni doped materials did not prove good candidates as sensors. However, their reduction treatment studies showed the formation of metallic nanoparticles on the surface which deeply influence their electrical conductivity as well as sensing ability. Consequently, this modification in surface structure and chemical composition enabled them to sense hydrogen gas at 300oC very effectively. The response of sensors based on these reduced materials was measurable and reversible. Some materials were also selected on the basis of their reduction stability and electrical properties, and their electrochemical performances were evaluated as SOFC anodes under dry methane and dry hydrogen fuels separately. The performance tests as SOFC anode revealed that the best anode material for the oxidation of dry hydrogen fuel is Sm0.95Ce0.05FeO3-δ. Furthermore, Sm0.95Ce0.05FeO3-δ proved to be coke resistant anode under dry methane fuel and exhibited reasonably low charge transfer resistance values at temperatures between 600-700oC. The doping of Co and Ni at the B-site of Sm0.95Ce0.05FeO3-δ found to be very effective in further improving its performance as SOFC anode towards oxidation of dry methane fuel at the lower temperatures.
15

New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

Bukhari, Syed Munawer 09 September 2011 (has links)
This work involved the development of new perovskite oxides based on SmFeO3 and testing their performances as sensors for reducing gases (H2, CO & CH4) and as anode materials for dry methane oxidation in solid oxide fuel cells. The new perovskite oxide materials with formula Sm0.95Ce0.05Fe1-xMxO3-δ (M= Co, Ni & Cr) were synthesized by a sol gel method using citric acid as a complexing agent. The resulting materials were characterized by using a battery of techniques including XRD, XRF, XPS, SEM and electrochemical methods. Sensing experiments revealed that both cobalt doped and Cr doped materials can detect H2, CO and CH4 in air at different temperatures including room temperature. The Ni doped materials did not prove good candidates as sensors. However, their reduction treatment studies showed the formation of metallic nanoparticles on the surface which deeply influence their electrical conductivity as well as sensing ability. Consequently, this modification in surface structure and chemical composition enabled them to sense hydrogen gas at 300oC very effectively. The response of sensors based on these reduced materials was measurable and reversible. Some materials were also selected on the basis of their reduction stability and electrical properties, and their electrochemical performances were evaluated as SOFC anodes under dry methane and dry hydrogen fuels separately. The performance tests as SOFC anode revealed that the best anode material for the oxidation of dry hydrogen fuel is Sm0.95Ce0.05FeO3-δ. Furthermore, Sm0.95Ce0.05FeO3-δ proved to be coke resistant anode under dry methane fuel and exhibited reasonably low charge transfer resistance values at temperatures between 600-700oC. The doping of Co and Ni at the B-site of Sm0.95Ce0.05FeO3-δ found to be very effective in further improving its performance as SOFC anode towards oxidation of dry methane fuel at the lower temperatures.
16

Investigations of cobalt-based oxides as cathode materials for intermediate-temperature solid oxide fuel cells

Li, Yan, doctor of materials science and engineering 20 November 2012 (has links)
Three cobalt-based oxides operating at the Co(III)/Co(II) redox couple have been investigated as potential cathode materials for the intermediate-temperature solid oxide fuel cells (IT-SOFCs). X-ray absorption spectroscopy measurements confirmed that both the oxygen-deficient perovskite Sr[subscript 0.7]Y[subscript 0.3]CoO[subscript 2.65-delta] (SYCO) and the double-perovskite Ba₂[Co][Bi[subscript x]Sc[subscript 0.2]Co[subscript 1.8-x]][subscript O6-delta] (x = 0.1 and 0.2) (BBSC) contain high-spin Co(III) in the bulk at room temperature and thus avoid the thermally driven spin-state crossover of the Co(III) ions usually observed in other cobalt-containing perovskite oxides. Electrochemical characterizations demonstrated that both cobalt oxides operating on the Co(III)/Co(II) redox couple are equally catalytically active for the oxygen reduction reaction as those operating on the Co(IV)/Co(III) redox couple. With an LSGM electrolyte-supported single test cell and NiO+GDC as anode, the maximum power densities Pmax at 800 ºC reach 927 and 1180 mW·cm⁻² for SYCO and BBSC cathodes, respectively. The oxygen-deficient perovskites Sr[subscript 1-x]R[subscript x]CoO[subscript 3-delta] (R = Eu-Ho, Y, x [approximately equal] 0.3) are identified as a new class of cathode materials for IT-SOFCs in this dissertation. On the other hand, the layered Ba2Co9O14 (BCO) containing the low-spin Co(III) at room temperature undergoes a thermally driven spin-state crossover, which has prevented it from being evaluated as the cathode of IT-SOFCs. This problem was overcome by fabrication of a 50-50 wt.% BCO + SDC (Sm[subscript 0.2]Ce[subscript 0.8]O[subscript 1.9]) composite cathode. The addition of SDC not only improved the adhesion to the electrolyte, but also enhanced the electrocatalytic activity for the oxygen reduction reaction. The composite cathode delivers a nearly stable P[subscript max] of ~450 mW·cm-2 at 800 °C in an LSGM electrolyte-supported single test cell. In addition, the electrochemical lithium intercalation process in the monoclinic Nb12O29 was studied with a Li/Nb₁₂O₂₉ half-cell, and the results showed that it can reversibly incorporate a relatively large amount of Li-ions in the voltage window of 2.5-1.0 V at a slow discharge/charge rate while retaining structural integrity. Compared with that of the bare Nb₁₂O₂₉, samples with carbon coating show an improved rate capability. The lithium insertion mechanism into Nb₁₂O₂₉ has also been discussed in terms of sites available to the lithium ions / text
17

New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

Bukhari, Syed Munawer 09 September 2011 (has links)
This work involved the development of new perovskite oxides based on SmFeO3 and testing their performances as sensors for reducing gases (H2, CO & CH4) and as anode materials for dry methane oxidation in solid oxide fuel cells. The new perovskite oxide materials with formula Sm0.95Ce0.05Fe1-xMxO3-δ (M= Co, Ni & Cr) were synthesized by a sol gel method using citric acid as a complexing agent. The resulting materials were characterized by using a battery of techniques including XRD, XRF, XPS, SEM and electrochemical methods. Sensing experiments revealed that both cobalt doped and Cr doped materials can detect H2, CO and CH4 in air at different temperatures including room temperature. The Ni doped materials did not prove good candidates as sensors. However, their reduction treatment studies showed the formation of metallic nanoparticles on the surface which deeply influence their electrical conductivity as well as sensing ability. Consequently, this modification in surface structure and chemical composition enabled them to sense hydrogen gas at 300oC very effectively. The response of sensors based on these reduced materials was measurable and reversible. Some materials were also selected on the basis of their reduction stability and electrical properties, and their electrochemical performances were evaluated as SOFC anodes under dry methane and dry hydrogen fuels separately. The performance tests as SOFC anode revealed that the best anode material for the oxidation of dry hydrogen fuel is Sm0.95Ce0.05FeO3-δ. Furthermore, Sm0.95Ce0.05FeO3-δ proved to be coke resistant anode under dry methane fuel and exhibited reasonably low charge transfer resistance values at temperatures between 600-700oC. The doping of Co and Ni at the B-site of Sm0.95Ce0.05FeO3-δ found to be very effective in further improving its performance as SOFC anode towards oxidation of dry methane fuel at the lower temperatures.
18

New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications

Bukhari, Syed Munawer January 2011 (has links)
This work involved the development of new perovskite oxides based on SmFeO3 and testing their performances as sensors for reducing gases (H2, CO & CH4) and as anode materials for dry methane oxidation in solid oxide fuel cells. The new perovskite oxide materials with formula Sm0.95Ce0.05Fe1-xMxO3-δ (M= Co, Ni & Cr) were synthesized by a sol gel method using citric acid as a complexing agent. The resulting materials were characterized by using a battery of techniques including XRD, XRF, XPS, SEM and electrochemical methods. Sensing experiments revealed that both cobalt doped and Cr doped materials can detect H2, CO and CH4 in air at different temperatures including room temperature. The Ni doped materials did not prove good candidates as sensors. However, their reduction treatment studies showed the formation of metallic nanoparticles on the surface which deeply influence their electrical conductivity as well as sensing ability. Consequently, this modification in surface structure and chemical composition enabled them to sense hydrogen gas at 300oC very effectively. The response of sensors based on these reduced materials was measurable and reversible. Some materials were also selected on the basis of their reduction stability and electrical properties, and their electrochemical performances were evaluated as SOFC anodes under dry methane and dry hydrogen fuels separately. The performance tests as SOFC anode revealed that the best anode material for the oxidation of dry hydrogen fuel is Sm0.95Ce0.05FeO3-δ. Furthermore, Sm0.95Ce0.05FeO3-δ proved to be coke resistant anode under dry methane fuel and exhibited reasonably low charge transfer resistance values at temperatures between 600-700oC. The doping of Co and Ni at the B-site of Sm0.95Ce0.05FeO3-δ found to be very effective in further improving its performance as SOFC anode towards oxidation of dry methane fuel at the lower temperatures.
19

Thermoelectrics and Oxygen Sensing Studies of Selected Perovskite Oxides

Behera, Sukanti January 2016 (has links)
Perovskite oxides show wide range of applications in the area of magnetism, ferroelectricity, piezoelectricity, thermoelectricity, gas sensing, catalyst development, solid oxide fuel cell, etc. This is due to flexibility in the structure and compositions that can be tuned by specific element doping. In the perovskite oxide (ABO3), large cation (A) is 12 -coordinated and smaller B-cation is 6 coordinated with oxide ions. Oxide materials are considered as better candidates for thermoelectric applications (interconversion of thermal into electrical energy) due to its non-toxicity and thermal stability at elevated temperature. These are insulating in nature and the conductivity can be increased by doping A and / or B –sites. Perovskite oxides are also used for oxygen monitoring in different applications including control and optimization of combustion of fossil fuels in industries and automobiles, biological and defines places, etc. In the present study, we focused on thermoelectric properties in single perovskite oxides of lanthanum cobaltite and calcium manganite and a double perovskite oxide of dysprosium barium cobaltite. Also, the oxygen sensing behaviour of dysprosium barium cobaltite at elevated temperatures is studied. The thesis contains seven chapters and a summary of respective chapters are given below. The first chapter outlines the basics of thermoelectric and gas sensing applications of both perovskite and double perovskite oxides. In the initial part, thermoelectric phenomena are explained. Thermoelectric effect is the conversion of thermal energy to electrical energy and vice-versa. Higher thermoelectric efficiency (η) can be achieved by maintaining a large temperature difference across the material. The efficiency depends on the thermoelectric figure of merit (zT) of material, which depends on thermopower (S), electrical resistivity (ρ) and thermal conductivity (κ) of the material and hence needs to be optimized. The latter part discusses the oxygen sensing property of distorted double perovskite 112 structure type as it shows advantages over other materials due to oxygen nonstoichiometric. Further, an overview of the relevant literature, objective and scope of the thesis are mentioned. The second chapter elucidates the materials and methods used for the present work. The materials viz. LaCoO3, CaMnO3-δ and DyBaCo2O5+δ, were selected for thermoelectric and oxygen sensing studies. Both the conventional solid state and soft chemistry methods were adopted for the synthesis of these materials. Powders were densified into pellets by hot uniaxial pressing / cold isostatic pressing and various heat treatments were carried out. Samples thus prepared were phase pure as confirmed using powder x-ray diffraction and Rietveld refinement performed for structural analysis. Morphological studies were carried out using scanning electron microscopy and transmission electron microscopy. Further Raman and x-ray photoelectron spectroscopic characterization of these materials were discussed. The transport properties viz. electrical resistivity, thermopower and thermal conductivity of compact pellets were measured at elevated temperatures. Further, the home-built apparatus for room temperature See beck measurements and chemo resistive oxygen sensing were explained in detail as a part of this work. The third chapter describes the effect of monovalent ion doping (Na+ and K+) at A-site of lanthanum cobaltite on thermoelectric properties. Lanthanum cobaltite system exhibit exotic behaviour due to commensuration phenomena of spin, lattice, charge and metal insulator transition. The synthesis, followed by structural refinements by Rietveld method using Fullprof suit program are explained. The results of the transport properties indicate that there is no appreciable change in the See beck Coefficient of K-doped samples throughout the studied temperature range. The Na-doped samples exhibit a decrease in the Seebeck value with increasing Na content at room temperature. At higher temperatures Seebeck value matches with that of the parent sample. This may be due to a change in the ratio of the concentration of Co4+/Co3+ ions which increases the configurational entropy of the system. In conclusion, the highest figure of merit (0.01) found for the Na / K- doped lanthanum cobaltite is for 15 atomic wt. % of doping amongst the studied samples. The fourth chapter explains about Tb/Nb co-doped calcium manganite for thermoelectric applications. The CaMnO3-δ shows enhanced thermoelectric properties, exhibits n-type behavior and the absolute thermopower is found to be 129 µV/K. Here, we investigated the Terbium and Niobium codoped at Ca and Mn-sites respectively. The presence of oxygen non-stoichiometry was confirmed using Raman spectroscopy (Mn3+ peak at 614 cm-1) and δ value was evaluated by iodometric titration. The thermoelectric properties of cold isostatic pressed (CIP) pellets prepared by the solid state and soft chemistry routes are compared. The non-monotonous behavior of absolute thermopower may be due to the increase of Mn3+ in the Mn4+ matrix and also the presence of oxygen defects in compounds. The thermoelectric figure of merit of solid state sample CaMnO3-δ estimated of 0.036 at 825K. The fifth chapter describes the thermoelectric properties of double Perovskite AA’B2O6 (112 type): (RE)BaCo2O5+δ. It is a disordered double perovskite with non-stoichiometry in oxygen and exhibits mixed valences of Cobalt. Resistivity of DyBaCo2O5+δ was found to be 0.09 Ω cm and Seebeck coefficient is found to be 42 µV/K. In order to improve the thermopower value, the Fe is substituted at Co-site. This varies the valences of Cobalt that in turn leads to a higher thermopower. Also, the morphology of thermally etched CIP pellets recorded and correlated with the transport properties. It shows the highest thermoelectric figure of merit of 0.25 at 773 K for 20 at wt % of Fe substituted sample. The sixth chapter explains about oxygen sensing studies of DyBaCo2O5+δ (112 type). The detailed structural and morphological characterization studies were carried out. Thermogravimetric analysis at isothermal temperature 873 K shows fast intake/release of oxygen of this disordered double perovskite structure. The higher chemo resistive oxygen sensitivity at the elevated temperature was measured. Further, the systematic study on the effect of oxygen sensing on the substitution of Fe and Cu at Co-site in DyBaCo2-xM xO5+δ was investigated. The possible bulk diffusion mechanism at higher temperature due to movement of oxygen defects were explained. The highest sensitivity was obtained for x = 0.4 at % of Fe and 0.2 at % of Cu at 973 K and 823 K respectively. The key findings and future aspects are summarized in the chapter-7.
20

Investigation Of Transition Metal Oxides Of Perovskite, Pyrochlore And Rutile Structures Towards Realization Of Novel Materials

Mani, Rohini 07 1900 (has links)
Materials chemistry is essentially concerned with the design/synthesis of new solids endowed with functional properties that could be of relevance to today’s materials technology. Among the large variety of solid materials that attract attention, metal oxides continue to contribute significantly to current materials chemistry. A wide variety of oxide materials (based on rocksalt, spinel, corundum, perovskite, garnet, pyrochlore and other structures) and their properties have been investigated over the years. Most of these oxides are derived from the transition metals. Transition metal oxides with structures derived from metal-oxygen (MO6) octahedra, in particular, display an array of exotic properties with potential or proven technological application. While it is traditionally believed that the partially filled d shell (dn : 0 < n < 10) of the transition metal atoms plays a crucial role in deciding the electronic properties, the significance of d0 metal atoms for the properties (and structure) of transition metal oxides is not fully recognized. Magnetism (SrRuO3, Fe3O4), metallicity (ReO3, LaNiO3), colossal magnetoresistance (La1-xCaxMnO3) and superconductivity (La2xSrxCuO4, Sr2RuO4) are some of the properties that can be traced to the presence of partially filled d shell, while properties like ferroelectricity (BaTiO3), piezoelectricity (PbZr1-xTixO3) and nonlinear optical response (LiNbO3) could be traced to the presence of transition metals (TiIV, ZrIV, NbV) with d0 electronic configuration. The empty d orbitals on the metal atoms constitute the low lying unoccupied states (LUMO) that mix with the highest occupied states (HOMO) of the ligand atoms (oxygen) through special chemical bonding effects (second order Jahn-Teller effect, SOJT). This mixing results, among others, in out-of-centre distortion(s) of the MO6 octahedra and this distortion is at the heart of several properties mentioned above. Among the transition metal oxide structures based on MO6 octahedra, three structures are noteworthy: the perovskite, the pyrochlore and the rutile. The AMO3 perovskite structure consists of a three-dimensional framework of corner sharing MO6 octahedra in which the A cation occupies the dodecahedral site surrounded by twelve oxide ions. The perovskite structure can accommodate a large variety of substitutions at both the A and the M sites as well as vacancies at the A/O sites, giving a large number of derivatives. Several variants of the perovskite structure are also known, for instance, the layered perovskites and ordered perovskites. Many nonperovskite structures are also known for the composition AMO3 : hexagonal YMnO3 is an alternative structure for AMO3 composition where manganese exists as MnO5 trigonal bipyramids. The A2M2O7 pyrochlore structure is also based on a corner-connected network of MO6 octahedra which interpenetrates an A2O network. The rutile (TiO2) is a well-known structure consisting of chains of edge-sharing MO6 octahedra, which are connected through corners to adjacent chains. A large number of oxide materials based on the above three structure types have been reported : for example, perovskite [Ba3ZnTa2O9 (microwave telecommunication ceramic), Pb3MgNb2O9 (relaxor ferroelectric), Bi4Ti3O12 (high temperature ferroelectric)], pyrochlore [Nd2Mo2O7 (metallic ferromagnet), AOs2O6 for A = K, Rb, Cs (superconductor)] and rutile [TiO2 (photocatalyst), CrO2 (metallic ferromagnet), VO2 (insulator-metal transition)]. Considering the current interest in oxide materials of these three structure types which continue to generate new variants and novel properties, we undertook the present research project to synthesize new derivatives of these structure types, and characterize their structures and relevant electronic properties. In doing so, we recognized that synthesis based on an understanding of the reactivity of the constituents and crystal chemistry of the expected products plays a crucial role in this effort. Accordingly, we tailored several new compositions of AMO3, A2M2O7 and MO2 stoichiometries and adopted appropriate methodologies for their synthesis. We have characterized the structures and properties of the solid products by means of state-of-the-art methods available to us. There are two main approaches to the synthesis of nonmolecular inorganic solids: conventional ceramic route and chimie douce / soft chemistry routes. In the ceramic route, solid reactants are heated at elevated temperatures for long durations with intermittent mixing/grinding until the reaction is complete. Chimie douce routes, on the other hand, utilize gentle reactions such as dehydration, decomposition, intercalation, ion exchange, and so on to synthesize the desired phases. The ceramic route generally provides access to the thermodynamically controlled product(s), while chimie douce routes allow access to metastable phases (kinetically controlled product(s)). Disadvantages notwithstanding, the ceramic route has been the mainstay of materials chemistry and several important materials continue to be discovered / synthesized by this route. The choice of the synthetic route based on an understanding of the crystal chemical preferences and the reactivities of the constituents involved is often crucial to achieve the desired final products. The present thesis is devoted to the synthesis and investigation of MO6 octahedra-based oxides belonging to the perovskite, pyrochlore and rutile structure types wherein we have explored alternate synthetic strategies (perovskite-based Ba3MM'2O9 telecommunication ceramics and a solution route for the synthesis of ruthenium-based pyrochlores) and probed structure-property relations of perovskite oxides (Ba3MM'M''O9 oxides for various M/M'/M'' atoms) as well as formation of new derivatives of layered Aurivillius phases. In addition, we have also synthesized new noncentrosymmetric oxides possessing the YMnO3 structure. Our investigation of rutile based oxides has resulted in the discovery of a new lead-free relaxor ferroelectric material, FeTiTaO6. Given that the lone pair PbII:6s2 plays a crucial role in the ferroelectric properties of Pb-based perovskite oxides, we have also investigated members of the Pb1-xLix/2Lax/2TiO3 system for their structure and dielectric response. The present thesis describes the results of these investigations in eight chapters. Chapter 1 provides a general introduction to oxides of the perovskite, pyrochlore and rutile structures. In Chapter 2, we describe a new one-pot metathesis strategy for the synthesis of dielectric ceramics Ba3MM'2O9 (M = Mg, Ni, Zn; M' = Nb, Ta). Rietveld refinement of X-ray diffraction data shows near-complete ordering of M-site ions in many cases. The dielectric properties of the products synthesized are found to be in reasonable agreement with reported data. The synthesis of ordered materials at lower temperatures (~1100 °C) than that employed in the conventional ceramic route (~1500 °C) is a significant result of this work. Chapter 3 presents a study of Ba3MIIMIVWO9 (MII = Ca, Zn; MIV = Ti, Zr) perovskite oxides for the purpose of synthesizing new dielectric ceramic materials and to gain understanding of the factors that stabilize 3C vs. 6H structures. In general, a 1:2-ordered 6H perovskite structure is stabilized at high temperatures (1300 °C) for all of the Ba3MIITiWO9 oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba2(Zn2/3Ti1/3)(W2/3Ti1/3)O6, is obtained at 1200 °C for Ba3ZnTiWO9. A metastable perovskite, Ba3CaZrWO9, that adopts the 1:1 3C structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d0-induced distortion of metaloxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the Ba3MIIMIVWO9 series. In Chapter 4, we describe the synthesis and investigation of the structure and dielectric properties of Ba3MIIITiMVO9 (MIII = Fe, Ga, Y, Lu; MV = Nb, Ta, Sb) perovskite oxides. The MV = Nb, Ta oxides adopt disordered/partially ordered 3C perovskite structures, where all the MIII/Ti/MV metal-oxygen octahedra are corner-connected. In contrast, the MV = Sb oxides show a distinct preference for the 6H structure, where SbV/TiIV metal-oxygen octahedra share a common face, forming (Sb,Ti)O9 dimers, that are corner-connected to the MIIIO6 octahedra. Investigation of dielectric properties of MIII = Y/Lu, MV = Nb/Ta oxides reveals a normal low loss dielectric behaviour with ε = 30 – 50 in the temperature range 50 – 350 °C. The MIII = Fe, MV = Nb/Ta members show a dielectric behaviour similar to relaxor ferroelectric materials. Chapter 5 deals with a study of isomorphous substitution of several metal atoms in two Aurivillius structures, Bi5TiNbWO15 and Bi4Ti3O12, in an effort to probe structure-property correlations. These investigations have led to the synthesis of new derivatives, Bi4LnTiMWO15 (Ln, = La, Pr; M = Nb, Ta), as well as Bi4PbNb2WO15 and Bi3LaPbNb2WO15, that largely retain the Aurivillius intergrowth structure of the parent oxide Bi5TiNbWO15, but characteristically tend toward a centrosymmetric / tetragonal structure for the Ln-substituted derivatives. On the other hand, coupled substitution, 2TiIV Æ MV + FeIII in Bi4Ti3O12, yields new Aurivillius phases, Bi4Ti3-2xNbxFexO12 (x = 0.25, 0.50) and Bi4Ti3-2xTaxFexO12 (x = 0.25) that retain the orthorhombic noncentrosymmetric structure of the parent Bi4Ti3O12. Chapter 6 describes the design and synthesis of a new series of noncentrosymmetric oxides, R3Mn1.5CuV0.5O9 (R = Y, Ho, Er, Tm, Yb, Lu) possessing the YMnO3 structure. Investigation of the Lu-Mn-Cu-V-O system revealed the existence of an isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x ≤ 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserves the noncentrosymmetric RMnO3 structure. An exploratory investigation of the synthesis, structure and electronic properties of new ruthenium(IV) pyrochlore oxides and their manganese-substituted derivatives is presented in Chapter 7. The richness of the electronic properties of ruthenium-based metal oxides is affirmed by the results which revealed several novel electronic ground states : a metallic and Pauli paramagnetic state for BiPbRu2O6.5 that turns into a semiconducting ferromagnetic spin-glass state at 50 K for BiPbRuMnO6.5 ; a metallic state that likely shows a charge density wave (CDW) instability at 50-225 K for Bi1.50Zn0.50Ru2O6.75, that is suppressed by manganese substitution in Bi1.50Zn0.50Ru1.75Mn0.25O6.50, and a metallic ferromagnetic spin-glass-like state for Pb2Ru1.75Mn0.25O6.15. We describe the investigation of the structure and dielectric properties of rutile-based MTiTaO6 (M = Al, Cr, Fe) in Chapter 8. All the oxides possess disordered rutile structure. FeTiTaO6 shows a strong relaxor ferroelectric effect, while CrTiTaO6 shows a weaker relaxor ferroelectric behaviour. This work is significant for two reasons: the new material is lead-free and it is based on the rutile structure, unlike the conventional relaxors which are mostly derived from the perovskite structure. The work presented in the thesis is carried out by the candidate as a part of the Ph.D. training programme and most of it has been published in the literature. She hopes that the studies reported here will constitute a worthwhile contribution to materials chemistry in general.

Page generated in 0.0622 seconds