• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 318
  • 107
  • 47
  • 29
  • 13
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 656
  • 115
  • 106
  • 103
  • 90
  • 88
  • 76
  • 72
  • 63
  • 62
  • 61
  • 61
  • 60
  • 57
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Fabrication and Properties of Bi1/2Na1/2TiO3 Based Ferroelectric Ceramics with Low Levels of B-site Additives

McLaughlin, Shona Rae 09 October 2008 (has links)
Three different B-site additives, Mg1/3Nb2/3, Zr4+, and Cu1/2W1/2, were added to BNT ceramics in varying concentrations. These were abbreviated as BNMN, BNZ, and BNCW, respectively. The compositions were calcined to form a perovskite structure, ground to a fine powder, pressed into tablets and sintered to form dense ceramics. XRD analysis confirmed the formation of the perovskite phase. The electro-mechanical properties of the ceramics were evaluated. There were improvements in the low-field room temperature dielectric constant of 30% with 25% BNMN, 13% with 10% BNZ, and 16% with 2% BNCW. Higher concentrations of the additives degraded the dielectric performance. The conductivity of the BNT ceramics was reduced with very small concentrations (0.25 to 0.5%) of each of the additives. This reduction was maintained at the higher concentrations of the additives, which allowed for higher electric fields to be applied during both the poling process and the strain measurements. Improvements of approximately 30% in the d33 values were found at concentrations of 0.5% of each of the additives, but higher concentrations of the additives degraded the d33 values. The coercive field was affected by the additions to BNT. Increasing concentrations of BNMN reduced the coercive field in bipolar strain measurements. This was accompanied by a reduction in the remanent strain. Small additions (0.5 to 1.5%) of BNZ resulted in an increase in the coercive field by about 12%, followed by a 25% decrease at 5% BNZ. The remanent strain followed the same pattern. All concentrations of BNCW studied reduced the coercive field by about 12%. The remanent strain increased by 25% at 0.5% BNCW, and decreased by 42% at 2.5% BNCW. The electro-mechanical results for the BNMN and BNZ additives were compared to the behaviours of their lead-based counterparts, PMN and PZ. There was no consistent trend in the response of the electromechanical properties to the additions between the current lead-free and the lead-based systems. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2008-10-03 15:13:24.791
72

VOx /TiO2 anode catalyst for oxidation of CH4 containing 5000 ppm H2S in SOFC

Garcia Rojas, Alfonso Andres Unknown Date
No description available.
73

Perovskite Oxide Combined With Nitrogen-Doped Carbon Nanotubes As Bifunctional Catalyst for Rechargeable Zinc-Air Batteries

Ismayilov, Vugar 28 April 2015 (has links)
Zinc air batteries are among the most promising energy storage devices due to their high energy density, low cost and environmental friendliness. The low mass and cost of zinc air batteries is a result of traditional active materials replacement with a thin gas diffusion layer which allows the battery to use the oxygen directly from the air. Despite the environmental and electronic advantages offered by this system, challenges related to drying the electrolyte and catalyst, determining a high activity bifictional catalyst, and ensuring durability of the gas diffusion layer need to be optimized during the fabrication of rechargeable zinc-air batteries. To date, platinum on carbon (Pt/C) provides the best electrochemical catalytic activity in acidic and alkaline electrolytes. However, the difficult acquisition and high cost of this catalyst mandates investigation into a new composition or synthesis of a bifunctional catalyst. A number of non-precious metal catalyst have been introduced for zinc-air batteries. Nevertheless, their catalytic activities and durability are still too low for commercial rechargeable zinc-air batteries. Thus, it is very important to synthesize a highly active bifunctional catalyst with good durability for long term charge and discharge use. In this study, it is proposed that a manganese-based perovskite oxide nanoparticle combined with nitrogen doped carbon nanotubes willshow promising electrochemical activity with remarkable cycle stability as a bifunctional catalyst for zinc-air batteries. In the first part of this work, nano-sized LaMnO3 and LaMn0.9Co0.1O3 were prepared to research the effectiveness of Co doping into LaMnO3 and its effect on electrochemical catalytic activities. To prepare LaMnO3 and LaMn0.9Co0.1O3, a hydrothermal reaction method was applied to synthesize nanoparticles which can increase the activity of perovskite type oxides. The result shows that while perovskite oxides replacing 10 wt. % of Mn doped with Co metal did not iv change its crystalline structure, the oxygen evolution reaction (OER) performance was increased by 600%. In the second part, a core-corona structured bifunctional catalyst (CCBC) was synthesized by combining LaMn0.9Co0.1O3 nanoparticles with nitrogen doped carbon nanotubes (NCNT). NCNT was chosen because of its large surface area and high catalytic activity for ORR. SEM and TEM analysis show that metal oxide nanoparticles were surrounded with nanotubes. Based on the electrochemical performances, ORR and OER activity is attributed to NCNT and the metal oxide core, respectively, complementing the activities of each other. Furthermore, its unique morphology introduces synergetic activity especially for OER. Electrochemical test results show that the onset potential was enhanced from -0.2 V (in LaMnO3 and LaMn0.9Co0.1O3) to -0.09 V (in CCBC) and the half wave potential was improved from -0.38 V to -0.19 V. In the third part, a single cell zinc-air battery test was performed using CCBC as the bifunctional catalyst for the air electrode. These results were compared with battery performance against a high-performance and expensive Pt/C based air catalyst. The results show that the battery containing catalytic CCBC consumes less energy during charge/discharge. The single cell long-term durability performance was compared, further proving that CCBC provides a more suitable catalyst for zinc-air battery than Pt/C.
74

A convergent beam electron diffraction study of some rare-earth perovskite oxides /

Jones, Daniel M. January 2007 (has links)
Thesis (M.Sc.)--University of Western Australia, 2008.
75

Structural and electrical characterization of highly oriented (KxNax)NbO3 (KNN) thin films by chemical solution deposition

Kang, Chiwon, Kim, Dong Joo, January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographical references (p. 77-82).
76

A novel fuel cell anode catalyst, perovskite LSCF compared in a fuel cell anode and tubular reactor testing /

Fisher, James C., January 2006 (has links)
Thesis (M.S.)--University of Akron, Dept. of Chemical Engineering, 2006. / "December, 2006." Title from electronic thesis title page (viewed 12/31/2008) Advisor, Steven S. C. Chuang; Faculty Readers, George Chase, Lu-Kwang Ju ; Department Chair, Lu-Kwang Ju; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
77

Development of perovskite thin films for use in piezoelectric based microelectromechanical systems /

Shelton, Christopher T. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 134-145). Also available on the World Wide Web.
78

The crystal and electronic structures of oxides containing d0 transition metals in octahedral coordination

Eng, Hank W., January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xx, 180 p.; also includes graphics. Includes bibliographical references (p. 139-145).
79

Development of perovskite and intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells

Lee, Ki-tae, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
80

Manufacturing of intermediate-temperature solid oxide fuel cells using novel cathode compositions

Torres Garibay, Claudia Isela, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.

Page generated in 0.0249 seconds