• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon-based Bifunctional Electrocatalysts for Metal-air Battery Applications

Liu, Yulong 06 November 2014 (has links)
The ever-increasing energy consumption and the environmental issues from the excessive rely on fossil fuels have triggered intensive research on the next generation power sources. Metal-air batteries, as one of the most promising technologies emerged, have attracted enormous attention due to its low cost, environmental benignity and high energy density. Among all types of metal-air batteries, Zn-air batteries in particular have tremendous potential for use as alternative energy storage primarily by the low-cost, abundance, low equilibrium potential, environmental benignity, a flat discharge voltage and a longer shell life. However, there are still issues in pertinent to the anode, electrolyte and cathode that remain to be overcome. In particular, the electrocatalyst at the cathode of a metal-air battery which catalyzes the electrochemistry reactions during charge and discharge of the cell plays the most crucial role for the successful commercialization of the metal-air technology. A series of studies from the carbon nanofibres to spinel cobalt oxide and perovskite lanthanum nickelate was conducted to explore the ORR/OER catalytic properties of those materials which lead to further investigations of the non-precious metal oxide/carbon hybrids as bifunctional catalysts. Introducing ORR active species such as nitrogen, sulfur, boron and phosphorus into high surface area carbon has been an effective strategy to fabricate high catalytic activity ORR electrocatalyst. Carbon nanofibre is an abundant, low cost and conductive material that has tremendous potential as ORR catalyst, especially via KOH activation and nitrogen-doping post-treatments. These two post-treatment methods serve as simplistic methodologies to enhance the carbon surface area and ORR catalytic activity of the pristine carbon nanofibres, respectively. The activated and nitrogen-doped carbon nanofibres demonstrated 26% of improved half-wave potential and 17% of increased limiting current density as a comparison to the pristine carbon nanofibre via RDE testing in alkaline electrolyte. To realize the catalytic activity of activated and nitrogen-doped carbon nanofibres in a more practical condition, they are further evaluated in Zn-air batteries. Polarization curves retrieved from Zn-air cell testing showed 75% higher voltage obtained by activated and nitrogen-doped carbon nanofibres than pristine carbon nanofibres at 70mAcm-2 current density. Structured oxides such as spinels and perovskites have been widely reported as ORR and OER catalyst in metal-air batteries. It is widely known that the properties of nanostructures are closely pertinent to their morphologies. The initial performance and durability of cubic Co3O4 synthesized from Feng et al and LaNiO3 from modified sol-gel method are tested in RDE system. After the durability testing, the ORR onset potential and limiting current density of cubic Co3O4 has decreased by 50% and 25%, respectively, whereas the OER limiting current density dropped significantly from ~15mAcm2 to almost zero current density. LaNiO3 with different particle sizes synthesized from modified sol-gel method was prepared and evaluated in RDE system. A particle size related performance can be clearly seen from the RDE results. The ORR limiting current of the lanthanum nickelate with smaller particle size (LNO-1) is higher than that of lanthanum nickelate with larger particle size (LNO-0) by 40% and the OER limiting current of LNO-1 is almost tripled that of LNO-0. With the previous experience on carbon material and structured oxides, two hybrid bifunctional catalysts were prepared and their performance was evaluated. cCo3O4/ExNG was made by physically mixing of cCo3O4 with ExNG with 1to 1 ratio. The hybrid showed enhanced bifunctional catalytic activities compared to each of its individual performance. Based on the voltammetry results, a significant positive shift (+0.16V) in ORR half-wave potential and tripled limiting current were observed in the case of the hybrid compared to the pure cobalt oxide. By combing cCo3O4 and ExNG, the OER limiting current of the hybrid exceeds that of cCo3O4 by ca. 33% and four-fold that of the ExNG. The kinetic current density at -0.4V for cCo3O4/ExNG is 15.9 mAcm-2 which is roughly 4 times the kinetic current density of the ExNG (3.8 mAcm-2) and over 10 times greater than that of cCo3O4 (1.1 mAcm-2). Electrochemical impedance spectroscopy showed that the charge transfer resistance of the hybrid is ca. one third of cCo3O4 and roughly only one half of ExNG which suggests a more efficient electrocatalysis of the hybrid on the air electrode than the other two. Mixing structured oxides with carbon material provides a simple method of fabricating bifunctional catalysts, however the interactions between those two materials are quite limited. In-situ synthesis of cCo3O4/MWCNT hybrid by chemically attaching cCo3O4to the acid-functionalized MWCNT is able to provide strong interactions between its components. Through RDE testing, the ORR activity of cCo3O4/MWCNT outperformed its individual component showing the highest onset potential (-0.15V) and current density (-2.91 mAcm-2 at -0.4V) with ~4 electron transfer pathway. Moreover, the MWCNT and cCo3O4 suffered from significant OER degradation after cycling (92% and 94%, respectively) whereas the hybrid material demonstrated an outstanding stability with only 15% of performance decrease, which is also far more superior to the physical mixture (30% higher current density). Among all the catalyst studied, cCo3O4/MWCNT has the highest performance and durability. The excellent performance of the hybrid warrants further in-depth research of non-precious metal oxide/carbon hybrids and the information presented in this thesis will create afoundation for future investigation towards high performance and durability bifunctional electrocatalysts for metal-air battery applications.
2

Perovskite Oxide Combined With Nitrogen-Doped Carbon Nanotubes As Bifunctional Catalyst for Rechargeable Zinc-Air Batteries

Ismayilov, Vugar 28 April 2015 (has links)
Zinc air batteries are among the most promising energy storage devices due to their high energy density, low cost and environmental friendliness. The low mass and cost of zinc air batteries is a result of traditional active materials replacement with a thin gas diffusion layer which allows the battery to use the oxygen directly from the air. Despite the environmental and electronic advantages offered by this system, challenges related to drying the electrolyte and catalyst, determining a high activity bifictional catalyst, and ensuring durability of the gas diffusion layer need to be optimized during the fabrication of rechargeable zinc-air batteries. To date, platinum on carbon (Pt/C) provides the best electrochemical catalytic activity in acidic and alkaline electrolytes. However, the difficult acquisition and high cost of this catalyst mandates investigation into a new composition or synthesis of a bifunctional catalyst. A number of non-precious metal catalyst have been introduced for zinc-air batteries. Nevertheless, their catalytic activities and durability are still too low for commercial rechargeable zinc-air batteries. Thus, it is very important to synthesize a highly active bifunctional catalyst with good durability for long term charge and discharge use. In this study, it is proposed that a manganese-based perovskite oxide nanoparticle combined with nitrogen doped carbon nanotubes willshow promising electrochemical activity with remarkable cycle stability as a bifunctional catalyst for zinc-air batteries. In the first part of this work, nano-sized LaMnO3 and LaMn0.9Co0.1O3 were prepared to research the effectiveness of Co doping into LaMnO3 and its effect on electrochemical catalytic activities. To prepare LaMnO3 and LaMn0.9Co0.1O3, a hydrothermal reaction method was applied to synthesize nanoparticles which can increase the activity of perovskite type oxides. The result shows that while perovskite oxides replacing 10 wt. % of Mn doped with Co metal did not iv change its crystalline structure, the oxygen evolution reaction (OER) performance was increased by 600%. In the second part, a core-corona structured bifunctional catalyst (CCBC) was synthesized by combining LaMn0.9Co0.1O3 nanoparticles with nitrogen doped carbon nanotubes (NCNT). NCNT was chosen because of its large surface area and high catalytic activity for ORR. SEM and TEM analysis show that metal oxide nanoparticles were surrounded with nanotubes. Based on the electrochemical performances, ORR and OER activity is attributed to NCNT and the metal oxide core, respectively, complementing the activities of each other. Furthermore, its unique morphology introduces synergetic activity especially for OER. Electrochemical test results show that the onset potential was enhanced from -0.2 V (in LaMnO3 and LaMn0.9Co0.1O3) to -0.09 V (in CCBC) and the half wave potential was improved from -0.38 V to -0.19 V. In the third part, a single cell zinc-air battery test was performed using CCBC as the bifunctional catalyst for the air electrode. These results were compared with battery performance against a high-performance and expensive Pt/C based air catalyst. The results show that the battery containing catalytic CCBC consumes less energy during charge/discharge. The single cell long-term durability performance was compared, further proving that CCBC provides a more suitable catalyst for zinc-air battery than Pt/C.
3

Suppressing Dendritic Growth during Zinc Electrodeposition using Polyethylenimine as an Electrolyte Additive for Rechargeable Zinc Batteries

Banik, Stephen John, II 31 May 2016 (has links)
No description available.
4

Non-Precious Cathode Electrocatalytic Materials for Zinc-Air Battery

Kim, Baejung 13 December 2013 (has links)
In the past decade, rechargeable batteries attracted the attention from the researchers in search for renewable and sustainable energy sources. Up to date, lithium-ion battery is the most commercialized and has been supplying power to electronic devices and hybrid and electric vehicles. Lithium-ion battery, however, does not satisfy the expectations of ever-increasing energy and power density, which of their limits owes to its intercalation chemistry and the safety.1-2 Therefore, metal-air battery drew much attention as an alternative for its high energy density and a simple cell configuration.1 There are several different types of metal-air batteries that convey different viable reaction mechanisms depending on the anode metals; such as Li, Al, Ca, Cd, and Zn. Redox reactions take place in a metal-air cell regardless of the anode metal; oxidation reaction at the anode and reduction reaction at the air electrode. Between the two reaction, the oxygen reduction reaction (ORR) at the air electrode is the relatively the limiting factor within the overall cell reactions. The sluggish ORR kinetics greatly affects the performance of the battery system in terms of power output, efficiency, and durability. Therefore, researchers have put tremendous efforts in developing highly efficient metal air batteries and fuel cells, especially for high capacity applications such as electric vehicles. Currently, the catalyst with platinum nanoparticles supported on carbon material (Pt-C) is considered to exhibit the best ORR activities. Despite of the admirable electrocatalytic performance, Pt-C suffers from its lack of practicality in commercialization due to their prohibitively high cost and scarcity as of being a precious metal. Thus, there is increasing demand for replacing Pt with more abundant metals due economic feasibility and sustainability of this noble metal.3-5 Two different attitudes are taken for solution. The first approach is by optimizing the platinum loading in the formulation, or the alternatively the platinum can be replaced with non-precious materials. The purpose of this work is to discover and synthesize alternative catalysts for metal-air battery applications through optimized method without addition of precious metals. Different non-precious metals are investigated as the replacement of the precious metal including transition metal alloys, transition metal or mixed metal oxides, and chalcogenides. These types of metals, alone, still exhibits unsatisfying, yet worse, kinetics in comparison to the precious metals. Nitrogen-doped carbon material is a recently well studied carbon based material that exhibits great potential towards the cathodic reaction.6 Nitrogen-doped carbon materials are found to exhibit higher catalytic activity compared to the mentioned types of metals for its improved conductivity. Benefits of the carbon based materials are in its abundance and minimal environmental footprints. However, the degradation of these materials has demonstrated loss of catalytic activity through destruction of active sites containing the transition metal centre, ultimately causing infeasible stability. To compensate for these drawbacks and other limits of the nitrogen-doped carbon based catalysts, nitrogen-doped carbon nanotubes (NCNT) are also investigated in the series of study. The first investigation focuses on a development of a simple method to thermally synthesize a non-precious metal based nitrogen-doped graphene (NG) electrocatalyst using exfoliated graphene (Ex-G) and urea with varying amounts of iron (Fe) precursor. The morphology and structural features of the synthesized electrocatalyst (Fe-NG) were characterized by SEM and TEM, revealing the existence of graphitic nanoshells that potentially contribute to the ORR activity by providing a higher degree of edge plane exposure. The surface elemental composition of the catalyst was analyzed through XPS, which showed high content of a total N species (~8 at.%) indicative of the effective N-doping, present mostly in the form of pyridinic nitrogen groups. The oxygen reduction reaction (ORR) performance of the catalyst was evaluated by rotating disk electrode voltammetry in alkaline electrolyte and in a zinc-air battery cell. Fe-NG demonstrated high onset and half-wave potentials of -0.023 V (vs. SCE) and -0.110 V (vs. SCE), respectively. This excellent ORR activity is translated into practical zinc-air battery performance capabilities approaching that of commercial platinum based catalyst. Another approach was made in the carbon materials to further improve the cost of the electrode. Popular carbon allotropes, CNT and graphene, are combined as a composite (GC) and heteroatoms, nitrogen and sulfur, are introduced in order to improve the charge distribution of the graphitic network. Dopants were doped through two step processes; nitrogen dopant was introduced into the graphitic framework followed by the sulfur dopant. The coexistence of the two heteroatoms as dopants demonstrated outstanding ORR performance to those of reported as metal free catalysts. Furthermore, effects of temperature were investigated through comparing ORR performances of the catalysts synthesized in two different temperatures (500 ??? and 900 ???) during the N-doping process (consistent temperature was used for S-doping). Through XPS analysis of the surface chemistry of catalysts produced with high temperature during the N-doping step showed absence of N-species after the subsequent S-doping process (GC-NHS). Thus, the synergetic effects of the two heteroatoms were not revealed during the half-cell testing. Meanwhile, the two heteroatoms were verified in the catalyst synthesized though using low temperature during the N-doping process followed by the S-doping step (GC-NLS). Consequently, ORR activity of the resulting material demonstrated promising onset and half-wave potentials of -0.117 V (vs. SCE) and -0.193 V (vs. SCE). In combination of these investigations, this document introduces thorough study of novel materials and their performance in its application as ORR catalyst in metal air batteries. Moreover, this report provides detailed fundamental insights of carbon allotropes, and their properties as potential elecrocatalysts and essential concepts in electrochemistry that lies behind zinc-air batteries. The outstanding performances of carbon based electrocatalyst are reviewed and used as the guides for further direction in the development of metal-air batteries as a promising sustainable energy resource in the future.
5

Synthèse et caractérisation de membranes conductrices anioniques pour la protection d'électrode à air dans une batterie Zinc-Air fonctionnant sous air ambiant / Synthesis and characterization of anionic conducting membranes for the air electrode protection in a Zinc-Air battery operating under ambient air

Messaoudi, Houssam mohammed 10 May 2016 (has links)
Différentes membranes conductrices anioniques ont été développées pour protéger une électrode à air fonctionnant dans une batterie Zinc-Air alimentée par de l’air ambiant. Dans ces conditions, le dioxyde de carbone contenu dans l’air, en contact avec l’électrolyte basique, se transforme en carbonate de potassium qui précipite dans la structure poreuse de l’électrode. Cela provoque l’augmentation de sa résistance et la perte de son étanchéité, et l’électrode n’est alors stable que 80 heures. L’objectif de cette étude est donc de rendre stable une électrode à air pendant 3000 heures de fonctionnement.Pour cela, différents réseaux (semi-)interpénétrés de polymères ont donc été développés en associant un polyélectrolyte et un réseau partenaire neutre. La polyépichlorhydrine greffée avec du 1,4-diazabicyclo(2,2,2)octane et un polyélectrolyte fluoré ont été choisis comme polymère conducteur anionique. Des réseaux neutres à base de poly(méthacrylate de 2-hydroxyéthyle), d’alcool polyvinylique et de perfluoropolyéther leur ont été, tour à tour, associés. Les propriétés physico-chimiques des différentes membranes développées ont été caractérisées selon leur densité de charges et leur composition. Les membranes présentant les meilleures propriétés requises (conductivité anionique, prise en masse limitée, sélectivité, …) ont ensuite été assemblées sur des électrodes à air dont le potentiel et la stabilité ont été évalués au cours du fonctionnement en demi-cellule. Ainsi, une électrode à air modifiée avec de telles membranes peut présenter un potentiel stable pendant 6800 heures de fonctionnement à -30mA/cm². / Different anionic conducting membranes have been developed to protect an air electrode operating in a Zinc-Air battery fed with ambient air. Under those conditions, carbon dioxide from atmospheric air reacts with the alkaline electrolyte, and is then transformed into potassium carbonate. The precipitate of this carbonate inside the electrode porous structure leads to the increase of the system resistance and the loss of its sealing after 80 h of operation. The objective of this study focuses on the improvement of the stability of an air electrode for 3000 h of operation, by protecting it from carbonation reaction with a polymer membrane.For this, different (semi-)interpenetrating polymer networks have therefore been developed combining a polyelectrolyte and a neutral network partner. Polyepichlorohydrin grafted with 1,4-diazabicyclo (2,2,2) octane and a fluorinated polyelectrolyte were chosen as anionic conductive polymer. Neutral networks based on poly (2-hydroxyethyl methacrylate), polyvinyl alcohol and perfluoropolyether were then, alternately, associated to the polyelectrolyte. The physico-chemical properties of the various developed membranes were characterized according to their charge density and composition. The membranes with the best required properties (anionic conductivity, limited weight uptake, selectivity ...) were then assembled on air electrodes whose potential and stability have been evaluated during the operation in half-cell. Thus, an air electrode modified with such membranes maintains a stable potential during 6800 hours of running at -30mA / cm².
6

Atomically Dispersed Pentacoordinated-Zirconium Catalyst with Axial Oxygen Ligand for Oxygen Reduction Reaction

Wang, Xia, An, Yun, Liu, Lifeng, Fang, Lingzhe, Liu, Yannan, Zhang, Jiaxu, Qi, Haoyuan, Heine, Thomas, Li, Tao, Kuc, Agnieszka, Yu, Minghao, Feng, Xinliang 19 April 2024 (has links)
Single-atom catalysts (SACs), as promising alternatives to Pt-based catalysts, suffer from the limited choice of center metals and low single-atom loading. Here, we report a pentacoordinated Zr-based SAC with nontrivial axial O ligands (denoted O−Zr−N−C) for oxygen reduction reaction (ORR). The O ligand downshifts the d-band center of Zr and confers Zr sites with stable local structure and proper adsorption capability for intermediates. Consequently, the ORR performance of O−Zr−N−C prominently surpasses that of commercial Pt/C, achieving a half-wave potential of 0.91 V vs. reversible hydrogen electrode and outstanding durability (92 % current retention after 130-hour operation). Moreover, the Zr site shows good resistance towards aggregation, enabling the synthesis of Zr-based SAC with high loading (9.1 wt%). With the high-loading catalyst, the zinc-air battery (ZAB) delivers a record-high power density of 324 mW cm−2 among those of SAC-based ZABs.
7

Electrocatalysis using Ceramic Nitride and Oxide Nanostructures

Anju, V G January 2016 (has links) (PDF)
Global warming and depletion in fossil fuels have forced the society to search for alternate, clean sustainable energy sources. An obvious solution to the aforesaid problem lies in electrochemical energy storage systems like fuel cells and batteries. The desirable properties attributed to these devices like quick response, long life cycle, high round trip efficiency, clean source, low maintenance etc. have made them very attractive as energy storage devices. Compared to many advanced battery chemistries like nickel-metal hydride and lithium - ion batteries, metal-air batteries show several advantages like high energy density, ease of operation etc. The notable characteristics of metal - air batteries are the open structure with oxygen gas accessed from ambient air in the cathode compartment. These batteries rely on oxygen reduction and oxygen evolution reactions during discharging and charging processes. The efficiency of these systems is determined by the kinetics of oxygen reduction reaction. Platinum is the most preferred catalyst for many electrochemical reactions. However, high cost and stability issues restrict the use of Pt and hence there is quest for the development of stable, durable and active electrocatalysts for various redox reactions. The present thesis is directed towards exploring the electrocatalytic aspects of titanium carbonitride. TiCN, a fascinating material, possesses many favorable properties such as extreme hardness, high melting point, good thermal and electrical conductivity. Its metal-like conductivity and extreme corrosion resistance prompted us to use this material for various electrochemical studies. The work function as well as the bonding in the material can be tuned by varying the composition of carbon and nitrogen in the crystal lattice. The current study explores the versatility of TiCN as electrocatalyst in aqueous and non-aqueous media. One dimensional TiC0.7N0.3 nanowires are prepared by simple one step solvothermal method without use of any template and are characterized using various physicochemical techniques. The 1D nanostructures are of several µm size length and 40 ± 15 nm diameter (figure 1). Orientation followed by attachment of the primary particles results in the growth along a particular plane (figure 2). (a) (b) (c) Figure 1. (a) SEM images of TiC0.7N0.3 nanowires (b) TEM image and (c) High resolution TEM image showing the lattice fringes. (a) (b) (d) Figure 2. Bright field TEM images obtained at different time scales of reaction. (a) 0 h; (b) 12 h; (c) 72 h and (d) 144 h. The next aspect of the thesis discusses the electrochemical performance of TiC0.7N0.3 especially for oxygen reduction. Electrochemical oxygen reduction reaction (ORR) reveals that the nanowires possess high activity for ORR and involves four electron process leading to water as the product. The catalyst effectively converts oxygen to water with an efficiency of 85%. A comparison of the activity of different (C/N) compositions of TiCN is shown in figure 3. The composition TiC0.7N0.3 shows the maximum activity for the reaction. The catalyst is also very selective for ORR in presence of methanol and thus cross-over issue in fuel cells can be effectively addressed. Density functional theory (DFT) calculations also lead to the same composition as the best for electrocatalysis, supporting the experimental observations. Figure 3. Linear sweep voltammetric curves observed for different compositions of titanium carbonitride towards ORR. The next chapter deals with the use of TiC0.7N0.3 as air cathode for aqueous metal - air batteries. The batteries show remarkable performance in the gel- and in liquid- based electrolytes for zinc - air and magnesium - air batteries. A partial potassium salt of polyacrylic acid (PAAK) is used as the polymer to form a gel electrolyte. The cell is found to perform very well even at very high current densities in the gel electrolyte (figures 4 and 5). Figure 4 Photographs of different components of the gel - based zinc - air battery. (a) (b) Figure 5. a) Discharge curves at different current densities of 5, 20, 50 and 100 mA/cm2 for zinc-air system with TiC0.7N0.3 cathode b) Charge – discharge cycles at 50 mA/cm2 for the three electrode configuration with TiC0.7N0.3 nanowire for ORR and IrO2 for OER and Zn electrode (2h. cycle period). Similarly, the catalytic activity of TiC0.7N0.3 has also been explored in non-aqueous electrolyte. The material acts as a bifunctional catalyst for oxygen in non- aqueous medium as well. It shows a stable performance for more than 100 cycles with high reversibility for ORR and OER (figure 6). Li-O2 battery fabricated with a non-aqueous gel- based electrolyte yields very good output. (a) (b) (c) Figure 6. Galvanostatic charge –discharge cycles. (a) at 1 mA/cm2 (b) specific capacity as a function of no. of cycles (c) photographs of PAN-based gel polymer electrolyte. Another reaction of interest in non –aqueous medium is I-/I3-. redox couple. TiC0.7N0.3 nanowires show small peak to peak separation, low charge transfer resistance and hence high activity. The catalyst is used as a counter electrode in dye sensitized a solar cell that shows efficiencies similar to that of Pt, state of the art catalyst (figure 7). (a) (b) (c) Figure 7 (a) Cyclic voltammograms for I-/I3 - redox species on TiC0.7N0.3 nanowires (red), TiC0.7N0.3 particle (black) and Pt (blue). (b) Photocurrent density - voltage characteristics for DSSCs with different counter electrodes. TiC0.7N0.3 nanowire (black), TiC0.7N0.3 particle (blue), Pt (red). (c) Photograph of a sample cell. (a) (b) (c) (d) Figure 8 a) Comparison ORR activity for (i) NiTiO3(black), (ii) N-rGO (red), (iii) NiTiO3 – N-rGO (green) and (iv) Pt/C (blue) (b) Linear sweep voltammograms for OER observed on NiTiO3 – N-rGO composite (black), NiTiO3 (brown), N-rGO (blue), glassy carbon (red) in 0.5 M KOH. (c) Galvanostatic discharge curves of NiTiO3 – N-rGO as air electrode (d) Charge – discharge cycle at 5 mA/cm2 for the rechargeable battery with 10 min. cycle period. The last part of the thesis discusses about a ceramic oxide, nickel titanate. The electrocatalytic studies of the material towards ORR and OER reveal that the catalyst shows remarkable performance as a bifunctional electrode. A gel - based zinc - air battery fabricated with nickel titanate – reduced graphene oxide composite shows exceptional performance of 1000 charge-discharge cycles in the rechargeable mode (figure 8). Of course, the primary battery configuration works very well too The thesis contains seven chapters on the aspects mentioned above with summary and future perspectives given as the last chapter. An appendix based on TiN nanotubes and supercapacitor studies is given at the end.

Page generated in 0.0485 seconds