• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem

Estep, Dewey 19 October 2015 (has links)
No description available.
2

Criterios de solubilidade do problema de Dirichlet / Criteria for the solvebility of the Dirichlet problem

Presoto, Adilson Eduardo, 1983- 18 March 2008 (has links)
Orientadores: Djairo Guedes de Figueiredo, Francisco Odair de Paiva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T16:14:26Z (GMT). No. of bitstreams: 1 Presoto_AdilsonEduardo_M.pdf: 798633 bytes, checksum: be0d791852ff6c964303c43174b753c4 (MD5) Previous issue date: 2008 / Resumo: Abordaremos diferentes métodos da Teoria do Potencial desenvolvidos no fim do século XIX e no começo do século XX para solucionar o Problema de Dirichlet. Iniciamos o primeiro capítulo com o Método da Varredura de Poincaré que transcendeu os anteriores e focalizou o problema sob uma nova óptica. Neste método, uma função harmônica, num domínio geral, era obtida, uma vez que condição de contorno fosse dada. Então condições na fronteira eram analizadas afim de que a função harmônica fosse, de fato, a solução do Problema de Dirichlet. Até então, as principais resoluções se baseavam no Princípio de Dirichlet que admitia soluções minimizantes para integrais de energia, se fundamentando em argumentos físicos. Contudo, tais argumentos continham alguns deslizes matemáticos como a admissão do mínimo para essas integrais. Posteriormente, surgiram os métodos de Perron e de Wiener dentro do espírito o Método do Poincaré. Ainda no primeiro capítulo, apresentamos um antecessor do método de Poincaré: o "Método de Schwarz. O segundo capítulo é dedicado ao Método das Equações Intregrais de Fredholm, no qual a Análise FUncional e as Equações Diferenciais Parciais caminharam lado a lado. Por fim, no último capítulo temos um resultado devido a Wiener que caracteriza os pontos regulares em termos de convergência de uma série envolvendo a capacidade de alguns conjuntos / Abstract: We will present different methods of Potential Theory developed at the end of the nineteenth century and the beginning of the twentieth century to solve the Dirichlet Problem. We start in the first chapter, with the Poincaré's Sweepping out Method, which transcended the former ones and focused the problem in a new insight. In this method, a harmonic function in a general domain is obtained, once a boundary condition is given. Then, conditions in the boundary are discussed so that this harmonic function is indeed the solution of the Dirichlet Problem. Until then, the key results were based on Dirichlet PrincipIe which admitted minimizing solutions to energy integraIs, by using some physical arguments. However, such arguments contained a few Mathematical gaps like the admission of a minimun to these integrals. Later, it appeared the Perron and Wiener Methods in the spirit of the Poincaré Method. Even in the first chapter, we discuss a predecessor of Poincaré's Method: the Schwarz's Method. The second chapter is devoted to the Integral Equations Method, where the Functional Analysis and Differential Equations walked side by side. Finally, the last chapter is a result due to Wiener that characterizes the regular points in terms of covergence of a series involving the capacity of some sets / Mestrado / Matematica - Analise- Equações Diferenciais e Parciais / Mestre em Matemática
3

O problema de Dirichlet para a equacão dos gráficos mínimos com dado no bordo lipschitz contínuo / The Dirichlet problem for the minimal graph equation with lipschitz continuous boundary data

Assmann, Caroline Maria 02 December 2016 (has links)
In this work, we study existence and non existence for the Dirichlet problem for the minimal graph equation in non convex domains of the plane. We search for conditions on the boundary data which be the less restricted possible for the solubility of the Dirichlet problem. / Neste trabalho estudamos existência e não existência do problema de Dirichlet para a equação dos gráficos mínimos em domínios não convexos do plano. Procuramos por condições sobre o dado no bordo que sejam as menos restritivas possíveis para que o problema de Dirichlet em questão tenha solução

Page generated in 0.0292 seconds