• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RET-DEPENDENT AND RET-INDEPENDENT MECHANISMS OF GFL-INDUCED ENHANCEMENT IN THE CAPSAICIN STIMULATED-RELEASE OF iCGRP FROM SENSORY NEURONS

Schmutzler, Brian S. 02 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are peptides implicated in the inflammatory response. They are released in increased amounts during inflammation and induce thermal hyperalgesia. Whether these molecules directly affect the sensitivity of primary nociceptive sensory neurons is unknown. This information could provide a link between increased inflammation-induced release of GFLs and their ability to promote inflammatory hyperalgesia. These molecules bind to one of four GFRα receptor subtypes, and this GFL-GFRα complex often translocates to the receptor tyrosine kinase, Ret. The focus of this dissertation was to determine whether GFLs modulate the stimulated-release of calcitonin gene-related peptide (CGRP). Isolated sensory neurons and freshly dissociated spinal cord tissue were used to examine the enhancement in stimulated-release of CGRP, a measure of sensitization. Exposure of isolated sensory neurons to GDNF, neurturin, and artemin, enhanced the capsaicin stimulated-release of immunoreactive CGRP (iCGRP). Sensitization by GFLs occurred in freshly dissociated spinal cord tissue. Persephin, another member of the GFL family, did not enhance stimulated-release of iCGRP. These results demonstrate that specific GFLs are mediators of neuronal sensitivity. The intracellular signaling pathways responsible for this sensitization were also evaluated. Inhibition of the mitogen activated protein kinase (MAPK)/extracellular signal-related kinase 1/2 (Erk 1/2) pathway selectively abolished the enhancement of CGRP release by GDNF. NTN-induced sensitization was abolished by inhibition of the phosphatidylinositol-3-kinase (PI-3K) pathway. Reduction in Ret abolished the GDNF-induced sensitization, but did not fully inhibit NTN or ART-induced sensitization. Inhibition of other cell surface receptors (neural cell adhesion molecule (NCAM), and Integrin β-1) had distinct effects on the sensitization capability of each of the GFLs. Ret and NCAM inhibition in combination abolished ART-induced sensitization. It was necessary to inhibit Ret, NCAM, and Integrin β-1 to prevent the NTN-induced sensitization. These data demonstrate that the GFLs use distinct signaling mechanisms to induce the sensitization of nociceptive sensory neurons. The work presented in this thesis provides the first evidence for these novel and distinct Ret-independent pathways for GFL-induced actions and provides insight into the mechanism of sensory neuronal sensitization in general.

Page generated in 0.0216 seconds