• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling the transition from channel-veins to PSBs in the early stage of fatigue tests

Zhu, Yichao January 2012 (has links)
Dislocation channel-veins and persistent slip bands (PSBs) are characteristic dislocation configurations that are of interest to both industry and academia. However, existing mathematical models are not adequate to describe the mechanism of the transition between these two states. In this thesis, a series of models are proposed to give a quantitative description to such a transition. The full problem has been considered from two angles. Firstly, the general motion and instabilities of arbitrary curved dislocations have been studied both analytically and numerically. Then the law of motion and local expansions are used to track the shapes of screw segments moving through channels, which are believed to induce dislocation multiplication by cross-slip. The second approach has been to investigate the collective behavior of a large number of dislocations, both geometrically necessary and otherwise. The traditional method of multiple scales does not apply well to describe the pile-up of two arrays of dislocations of opposite signs on a pair of neighbouring glide planes in two dimensional space. Certain quantities have to be more accurately defined under the multiple-scale coordinates to capture the much more localised resultant stress caused by these dislocation pairs. Through detailed calculations, one-dimensional dipoles can be homogenised to obtain some insightful results both on a local scale where the dipole pattern is the key diagnostic and on a macroscopic scale on which density variations are of most interest. Equilibria of dislocation dipoles in a two-dimensional regular lattice have been also studied. Some natural transitions between different patterns can be found as a result of geometrical instabilities.
2

Microstructural effects on fatigue damage evolution in advanced high strength sheet (AHSS) steels

Godha, Anshul 08 June 2015 (has links)
An understanding of the damage evolution prior to crack initiation in advanced structural materials is of vital importance to the fatigue community in both academia and industry. Features known as the Persistent Slip Bands (PSBs) play an integral role in this damage evolution. Therefore, PSBs have been the focus of a lot of science-based investigations over the years. However, most existing studies in this area are restricted to analysis of PSBs in single crystal face centered cubic (FCC) materials. Moreover, these studies lack a quantitative analysis of the evolution of the fatigue damage (or PSBs) as a function of the material microstructure. This is especially true for relatively modern materials such as the Advanced High Strength Structural (AHSS) steels that are gaining a lot of importance in the automotive sector. Accordingly, the objective of this research is to quantitatively characterize evolution of PSBs in three AHSS steels having different microstructures as a function of number of fatigue cycles and strain amplitude. For this purpose strain controlled interrupted fatigue tests have been performed on two dual phase steels (DP-590 and DP-980) having different relative amounts of tempered martensite and a ferritic high strength low alloy steel (HR-590). Digital image analysis and Stereology have been used for unbiased quantitative characterization of the evolution of global geometry of the PSB colonies as function of number of fatigue cycles and strain amplitude. Evolution of PSB colonies has been couched in terms of variation of PSB colony volume fraction and total surface area unit volume, and total surface area of individual PSBs per unit volume and three-dimensional angular orientation distribution of the PSBs. For this purpose, new stereological techniques have been developed for estimation of the three-dimensional angular orientation distribution. The stereological data reveal that during strain controlled in these AHSS steels, volume fraction of the PSB colonies varies linearly with the their total surface area per unit volume. Detailed analysis of the stereological data leads to a simple geometric model for evolution of the PSB colonies in the three AHSS steels, which accounts for all observed data trends.
3

Fatigue Behavior of A356 Aluminum Alloy

Nelaturu, Phalgun 05 1900 (has links)
Metal fatigue is a recurring problem for metallurgists and materials engineers, especially in structural applications. It has been responsible for many disastrous accidents and tragedies in history. Understanding the micro-mechanisms during cyclic deformation and combating fatigue failure has remained a grand challenge. Environmental effects, like temperature or a corrosive medium, further worsen and complicate the problem. Ultimate design against fatigue must come from a materials perspective with a fundamental understanding of the interaction of microstructural features with dislocations, under the influence of stress, temperature, and other factors. This research endeavors to contribute to the current understanding of the fatigue failure mechanisms. Cast aluminum alloys are susceptible to fatigue failure due to the presence of defects in the microstructure like casting porosities, non-metallic inclusions, non-uniform distribution of secondary phases, etc. Friction stir processing (FSP), an emerging solid state processing technique, is an effective tool to refine and homogenize the cast microstructure of an alloy. In this work, the effect of FSP on the microstructure of an A356 cast aluminum alloy, and the resulting effect on its tensile and fatigue behavior have been studied. The main focus is on crack initiation and propagation mechanisms, and how stage I and stage II cracks interact with the different microstructural features. Three unique microstructural conditions have been tested for fatigue performance at room temperature, 150 °C and 200 °C. Detailed fractography has been performed using optical microscopy, scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). These tools have also been utilized to characterize microstructural aspects like grain size, eutectic silicon particle size and distribution. Cyclic deformation at low temperatures is very sensitive to the microstructural distribution in this alloy. The findings from the room temperature fatigue tests highlight the important role played by persistent slip bands (PSBs) in fatigue crack initiation. At room temperature, cracks initiate along PSBs in the absence of other defects/stress risers, and grow transgranularly. Their propagation is retarded when they encounter grain boundaries. Another major finding is the complete transition of the mode of fatigue cracking from transgranular to intergranular, at 200 °C. This occurs when PSBs form in adjacent grains and impinge on grain boundaries, raising the stress concentration at these locations. This initiates cracks along the grain boundaries. At these temperatures, cyclic deformation is no longer microstructure- dependent. Grain boundaries don’t impede the progress of cracks, instead aid in their propagation. This work has extended the current understanding of fatigue cracking mechanisms in A356 Al alloys to elevated temperatures.
4

Únavová odolnost a mechanizmy únavového poškození v materiálech pro vysoké teploty / Fatigue resistance and mechanisms of the fatigue damage in materials for high temperatures

Petráš, Roman January 2021 (has links)
Superaustenitická korozivzdorná ocel typu 22Cr25NiWCoCu určená pro vysokoteplotní aplikace v energetickém průmyslu byla studována za podmínek nízkocyklové únavy při pokojové a zvýšené teplotě. Jednotlivé vzorky byly podrobeny různým zátěžným procedurám, což umožnilo studium materiálové odezvy spolu s mechanismem poškození. Křivky cyklického zpevnění/změkčení, cyklického napětí a Coffin-Mansonovy křivky byly vyhodnoceny. Únavová životnost materiálu byla diskutována s ohledem na uplatňované mechanismy poškození, které se vyvinuly za specifických zátěžných podmínek. Standardní izotermální únavové experimenty byly provedeny při pokojové a zvýšené teplotě. Hysterezní smyčky zaznamenané během cyklického zatěžování byly analyzovány pomocí zobecněné statistické teorie hysterezní smyčky. Pro různé amplitudy napětí byla určena jak distribuce hustoty pravděpodobnosti interních kritických napětí (dále PDF), tak rovněž zjištěn její vývoj během cyklického namáhání. Zjištěné průběhy PDF byly korelovány s vývojem povrchového reliéfu a vnitřního dislokačního uspořádání zdokumentované pro obě teploty pomocí rastrovací elektronové mikroskopie (SEM) vybavené technikou fokusovaného iontového svazku (FIB), která umožnila rovněž efektivní studium nukleace povrchových únavových trhlin. Při cyklickém zatížení při pokojové teplotě byla pozorována lokalizace cyklické plastické deformace do perzistentních skluzových pásů (PSP). V místech, kde tyto PSP vystupují na povrch materiálu byly pozorovány perzistentní skluzové stopy (PSS) tvořené extruzemi a intruzemi. Postupné prohlubování intruzí, zejména na čele nejhlubší intruze, vede k iniciaci únavové trhliny. Odlišný mechanismus tvorby trhlin byl zjištěn při únavové zkoušce při zvýšené teplotě, kde zásadní roli hrál vliv prostředí. Rychlá oxidace hranic zrn a jejich následné popraskání představuje dominantní mechanismus v I. stádiu nukleace trhlin. Aplikace desetiminutové prodlevy v tahové části zátěžného cyklu vedlo k vývoji vnitřního (kavitačního) poškozování. Mechanismy vnitřního poškozování byly studovány na podélných řezech rovnoběžných s napěťovou osou zkušebních vzorků. Trhliny a jejich vztah k hranicím zrn a dvojčat byly studovány pomocí difrakce zpětně odražených elektronů (EBSD). Vliv prodlevy na únavovou životnost byl korelován s vývojem povrchového reliéfu a vnitřního poškození. Vzorky z uvedené oceli byly rovněž podrobeny zkouškám termomechanické únavy (TMF), při nichž se v čase mění jak zátěžná síla tak i teplota. Termomechanické únavové zkoušky v režimu soufázném (in-phase) a protifázném (out-of-phase) byly provedeny jak s prodlevou, tak i bez ní. Ve všech případech bylo pozorováno rychlé cyklické zpevnění bez ohledu na použitou amplitudu deformace, u vzorků testovaných v out-of-phase režimu byla zjištěna tendence k saturaci. Zkoumáním povrchového reliéfu za pomocí technik SEM a FIB byla odhalena přednostní oxidace hranic zrn a následné praskání těchto hranic kolmo k ose zatížení. Prodlevy v cyklech při maximálním napětí vedly ke zvýšení amplitudy plastické deformace a následně ke creepovému poškození ve formě vnitřních kavit a trhlin. Interkrystalické šíření trhlin bylo pozorováno na vzorcích testovaných v režimu in-phase. Vývoj poškození v režimu out-of-phase nebyl principiálně ovlivněn zařazením prodlevy do zátěžného cyklu. Charakteristickým znakem namáhání v režimu out-of-phase je nukleace několika trhlin v homogenní oxidické vrstvě jdoucích napříč zrny kolmo k ose zatěžování.

Page generated in 0.3022 seconds