Spelling suggestions: "subject:"perturbations cosmologique"" "subject:"perturbations cosmologie""
1 |
Second-order cosmological perturbations in two-field inflation and predictions for non-Gaussianity / Perturbations cosmologiques de deuxième ordre dans le contexte des modèles d'inflation à deux champs et leurs conséquences pour la non-gaussiannitéTzavara, Eleftheria 30 September 2013 (has links)
Les prédictions d'inflation du spectre de puissance de la perturbation de la courbure ont déjà fait l’objet de vérification d’un excellent niveau, permettant à de nombreux modèles de rester compatibles avec les observations. Dans la présente thèse, nous avons étudié les corrélations de troisième ordre qui pourraient permettre de mieux distinguer les différents modèles d'inflation les uns des autres. Parmi toutes les extensions possibles du modèle standard d'inflation, nous avons choisi d'étudier des modèles de deux champs scalaires à termes cinétiques standards et à métrique des champs plat. La nouveauté introduite par ces modèles est la présence de la perturbation d'isocourbure. Son interaction avec la perturbation adiabatique hors de l'horizon produit des non-linéarités caractéristiques des modèles à plusieurs champs scalaires. Dans, ce contexte, nous avons établi la forme de la perturbation adiabatique et de la perturbation d'isocourbure invariant sous transformations de jauge en deuxième ordre. De plus, nous avons trouvé l'action de troisième ordre qui décrit leurs interactions. En outre, nous avons élaboré le formalisme des grandes longueurs d'onde afin d'obtenir une expression pour le paramètre de non-gaussiannité fNL en fonction du potentiel des champs. Nous avons ensuite, utilisé cette formule pour traiter analytiquement - avec l'hypothèse de slow-roll - des classes générales de potentiels et vérifier nos résultats numériquement par la théorie exacte. De là, nous avons pu tirer des conclusions générales concernant les propriétés de fNL, comme par exemple la dépendance de sa magnitude des caractéristiques du trajet des champs et de la perturbation d'isocourbure, ainsi que sa dépendance de la magnitude et de la taille relative des trois impulsions dont le corrélateur à trois points est fonction. / Inflationary predictions for the power spectrum of the curvature perturbation have been verified to an excellent degree, leaving many models compatible with observations. In this thesis we studied third-order correlations, that might allow one to further distinguish between inflationary models. From all the possible extensions of the standard inflationary model, we chose to study two-field models with canonical kinetic terms and flat field space. The new feature is the presence of the so-called isocurvature perturbation. Its interplay with the adiabatic perturbation outside the horizon gives birth to non-linearities characteristic of multiple-field models. In this context, we established the second-order gauge-invariant form of the adiabatic and isocurvature perturbation and found the third-order action that describes their interactions. Furthermore, we built on and elaborated the long-wavelength formalism in order to acquire an expression for the parameter of non-Gaussianity fNL as a function of the potential of the fields. We next used this formula to study analytically, within the slow-roll hypothesis, general classes of potentials and verified our results numerically for the exact theory. From this study, we deduced general conclusions about the properties of fNL, its magnitude depending on the characteristics of the field trajectory and the isocurvature component, as well as its dependence on the magnitude and relative size of the three momenta of which the three-point correlator is a function.
|
2 |
Explorer la physique de l'accélération cosmique / Exploring the physics of cosmic accelerationSteigerwald, Heinrich Maria 02 March 2015 (has links)
L'expansion accélérée de l'univers est devenu un fait établi que personne ne pouvait prévoir il y a encore une vingtaine d'années. Pour expliquer l'accélération cosmique, l'univers doit être composé de $75%$ d'énergie noire, une matière hypothétique à pression négative. Une alternative aussi vertigineuse consiste à modifier la relativité générale d'Einstein à l'échelle cosmique.Mes travaux de thèse portent sur la contrainte des modèles d'énergie noire et de gravité modifiée avec les données observationnelles provenant de la croissance linéaire des structures cosmologiques. Une méthode basée sur une nouvelle paramétrisation de l'index de croissance des perturbations linéaires cosmologiques permet d'analyser un grand nombre de modèles "accélératoires" en même temps. Nous avons évalué et validé cette méthode par une analyse systématique de sa précision et de sa performance. Mes résultats montrent que le modèle standard de la cosmologie (le modèle $Lambda$CDM) reste en accord avec les données actuelles. Dans une étude approfondie, nous simulons les contraintes possibles avec les futures sondes cosmologiques de "précision" comme Euclid. Pour analyser encore plus de modèles en même temps, nous introduisons la théorie effective des champs de l'énergie noire (EFT) dans le formalisme développé auparavant. La EFT est un formalisme prometteur qui permet d'explorer d'une manière complète tous les modèles gravitationnels non-standards résultant de l'addition d'un degré de liberté supplémentaire dans l'équation d'Einstein. Nous proposons une paramétrisation de cette théorie que nous confrontons avec les données actuelles et futures. / The accelerated expansion of the universe has become an established fact that nobody could foresee until twenty years ago. To explain the cosmic acceleration, the universe must be composed by $75%$ of dark energy, a hypothetical form of matter with negative pressure. Alternatively, Einstein's field equation must be modified on cosmic scales. During my thesis I have worked on the constraint of dark energy and modified gravity models with data coming from the observed growth rate of cosmic structures. We have introduced a method based on a new parametrization of the growth index of linear cosmological perturbations. An advantage is the possibility of a concurrent analysis of multiple accelerating models. We have evaluated and validated the method in a systematic precision and performance check. My results show that the standard model of cosmology (the $Lambda$CDM model) remains consistent with current data. In an ongoing study, we have simulated future constraints for upcoming cosmological 'precision' probes like Euclid.In a second step, we introduce the effective field theory of dark energy (EFT) into our formalism. The EFT is a promising framework that allows to explore in a complete way all non-standard gravitational models that result from adding one degree of freedom in Einstein's field equation. Another advantage is its neat split of background and perturbation observables. We propose a parametrization of the EFT that we confront with current and simulated future constraints.
|
Page generated in 0.0901 seconds