Spelling suggestions: "subject:"pervasive system"" "subject:"pervasives system""
1 |
Personalizable architecture model for optimizing the access to pervasive ressources and services : Application in telemedicineNageba, Ebrahim 07 December 2011 (has links) (PDF)
The growing development and use of pervasive systems, equipped with increasingly sophisticated functionalities and communication means, offer fantastic potentialities of services, particularly in the eHealth and Telemedicine domains, for the benifit of each citizen, patient or healthcare professional. One of the current societal challenges is to enable a better exploitation of the available services for all actors involved in a given domain. Nevertheless, the multiplicity of the offered services, the systems functional variety, and the heterogeneity of the needs require the development of knowledge models of these services, systems functions, and needs. In addition, the distributed computing environments heterogeneity, the availability and potential capabilities of various human and material resources (devices, services, data sources, etc.) required by the different tasks and processes, the variety of services providing users with data, the interoperability conflicts between schemas and data sources are all issues that we have to consider in our research works. Our contribution aims to empower the intelligent exploitation of ubiquitous resources and to optimize the quality of service in ambient environment. For this, we propose a knowledge meta-model of the main concepts of a pervasive environment, such as Actor, Task, Resource, Object, Service, Location, Organization, etc. This knowledge meta-model is based on ontologies describing the different aforementioned entities from a given domain and their interrelationships. We have then formalized it by using a standard language for knowledge description. After that, we have designed an architectural framework called ONOF-PAS (ONtology Oriented Framework for Pervasive Applications and Services) mainly based on ontological models, a set of rules, an inference engine, and object oriented components for tasks management and resources processing. Being generic, extensible, and applicable in different domains, ONOF-PAS has the ability to perform rule-based reasoning to handle various contexts of use and enable decision making in dynamic and heterogeneous environments while taking into account the availability and capabilities of the human and material resources required by the multiples tasks and processes executed by pervasive systems. Finally, we have instantiated ONOF-PAS in the telemedicine domain to handle the scenario of the transfer of persons victim of health problems during their presence in hostile environments such as high mountains resorts or geographically isolated areas. A prototype implementing this scenario, called T-TROIE (Telemedicine Tasks and Resources Ontologies for Inimical Environments), has been developed to validate our approach and the proposed ONOF-PAS framework.
|
2 |
Dynamic architecture for multimodal applications to reinforce robot-environment interaction / Architectures et modèles dynamiques dédiés aux applications multimodales pour renforcer l'interaction robot-environnementAdjali, Omar 14 December 2017 (has links)
La représentation des connaissances et le raisonnement sont au cœur du grand défi de l'Intelligence Artificielle. Plus précisément, dans le contexte des applications robotiques, la représentation des connaissances et les approches de raisonnement sont nécessaires pour résoudre les problèmes de décision auxquels sont confrontés les robots autonomes lorsqu'ils évoluent dans des environnements incertains, dynamiques et complexes ou pour assurer une interaction naturelle dans l'environnement humain. Dans un système d'interaction robotique, l'information doit être représentée et traitée à différents niveaux d'abstraction: du capteur aux actions et plans. Ainsi, la représentation des connaissances fournit les moyens de décrire l'environnement avec différents niveaux d'abstraction qui permettent d'effectuer des décisions appropriées. Dans cette thèse, nous proposons une méthodologie pour résoudre le problème de l'interaction multimodale en décrivant une architecture d'interaction sémantique basée sur un cadre qui démontre une approche de représentation et de raisonnement avec le langage (EKRL environment knowledge representation language), afin d'améliorer l'interaction entre les robots et leur environnement. Ce cadre est utilisé pour gérer le processus d'interaction en représentant les connaissances impliquées dans l'interaction avec EKRL et en raisonnant pour faire une inférence. Le processus d'interaction comprend la fusion des valeurs des différents capteurs pour interpréter et comprendre ce qui se passe dans l'environnement, et la fission qui suggère un ensemble détaillé d'actions qui sont mises en œuvre. Avant que ces actions ne soient mises en œuvre par les actionneurs, ces actions sont d'abord évaluées dans un environnement virtuel qui reproduit l'environnement réel pour évaluer la faisabilité de la mise en œuvre de l'action dans le monde réel. Au cours de ces processus, des capacités de raisonnement sont nécessaires pour garantir une exécution globale d'un scénario d'interaction. Ainsi, nous avons fourni un ensemble de techniques de raisonnement pour effectuer de l’inférence déterministe grâce à des algorithmes d'unification et des inférences probabilistes pour gérer des connaissances incertaines en combinant des modèles relationnels statistiques à l'aide des réseaux logiques de Markov (MLN) avec EKRL. Le travail proposé est validé à travers des scénarios qui démontrent l’applicabilité et la performance de notre travail dans les applications du monde réel. / Knowledge Representation and Reasoning is at the heart of the great challenge of Artificial Intelligence. More specifically, in the context of robotic applications, knowledge representation and reasoning approaches are necessary to solve decision problems that autonomous robots face when it comes to evolve in uncertain, dynamic and complex environments or to ensure a natural interaction in human environment. In a robotic interaction system, information has to be represented and processed at various levels of abstraction: From sensor up to actions and plans. Thus, knowledge representation provides the means to describe the environment with different abstraction levels which allow performing appropriate decisions. In this thesis we propose a methodology to solve the problem of multimodal interaction by describing a semantic interaction architecture based on a framework that demonstrates an approach for representing and reasoning with environment knowledge representation language (EKRL), to enhance interaction between robots and their environment. This framework is used to manage the interaction process by representing the knowledge involved in the interaction with EKRL and reasoning on it to make inference. The interaction process includes fusion of values from different sensors to interpret and understand what is happening in the environment, and the fission which suggests a detailed set of actions that are for implementation. Before such actions are implemented by actuators, these actions are first evaluated in a virtual environment which mimics the real-world environment to assess the feasibility of the action implementation in the real world. During these processes, reasoning abilities are necessary to guarantee a global execution of a given interaction scenario. Thus, we provided EKRL framework with reasoning techniques to draw deterministic inferences thanks to unification algorithms and probabilistic inferences to manage uncertain knowledge by combining statistical relational models using Markov logic Networks(MLN) framework with EKRL. The proposed work is validated through scenarios that demonstrate the usability and the performance of our framework in real world applications.
|
3 |
Achieving Autonomic Computing through the Use of Variability Models at Run-timeCetina Englada, Carlos 15 April 2010 (has links)
Increasingly, software needs to dynamically adapt its behavior at run-time in response
to changing conditions in the supporting computing infrastructure and in
the surrounding physical environment. Adaptability is emerging as a necessary underlying
capability, particularly for highly dynamic systems such as context-aware
or ubiquitous systems.
By automating tasks such as installation, adaptation, or healing, Autonomic
Computing envisions computing environments that evolve without the need for human
intervention. Even though there is a fair amount of work on architectures
and their theoretical design, Autonomic Computing was criticised as being a \hype
topic" because very little of it has been implemented fully. Furthermore, given that
the autonomic system must change states at runtime and that some of those states
may emerge and are much less deterministic, there is a great challenge to provide
new guidelines, techniques and tools to help autonomic system development.
This thesis shows that building up on the central ideas of Model Driven Development
(Models as rst-order citizens) and Software Product Lines (Variability
Management) can play a signi cant role as we move towards implementing the key
self-management properties associated with autonomic computing. The presented
approach encompass systems that are capable of modifying their own behavior with
respect to changes in their operating environment, by using variability models as if
they were the policies that drive the system's autonomic recon guration at runtime.
Under a set of recon guration commands, the components that make up the architecture
dynamically cooperate to change the con guration of the architecture to a
new con guration.
This work also provides the implementation of a Model-Based Recon guration
Engine (MoRE) to blend the above ideas. Given a context event, MoRE queries the variability models to determine how the system should evolve, and then it provides
the mechanisms for modifying the system. / Cetina Englada, C. (2010). Achieving Autonomic Computing through the Use of Variability Models at Run-time [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7484
|
4 |
Personalizable architecture model for optimizing the access to pervasive ressources and services : Application in telemedicine / Modèle d’architecture personnalisable pour l’optimisation de l’accès à des ressources et services pervasifs : Application à la télémédecineNageba, Ebrahim 07 December 2011 (has links)
Le développement et l’usage croissants de systèmes pervasifs, dotés de fonctionnalités et de moyens de communication de plus en plus sophistiqués, offrent de fantastiques potentialités de services, en particulier pour l’e-Santé et la télémédecine, au bénéfice de tout citoyen, patient ou professionnel de santé. L’un des challenges sociétaux actuels est de permettre une meilleure exploitation des services disponibles pour l’ensemble des acteurs impliqués dans un domaine donné. Mais la multiplicité des services offerts, la diversité fonctionnelle des systèmes, et l’hétérogénéité des besoins nécessitent l’élaboration de modèles de connaissances de ces services, des fonctions de ces systèmes et des besoins. En outre, l’hétérogénéité des environnements informatiques distribués, la disponibilité et les capacités potentielles des diverses ressources humaines et matérielles (instrumentation, services, sources de données, etc.) requises par les différentes tâches et processus, la variété des services qui fournissent des données aux utilisateurs, et les conflits d’interopérabilité entre schémas et sources de données sont autant de problématiques que nous avons à considérer au cours de nos travaux de recherche. Notre contribution vise à optimiser la qualité de services en environnement ambiant et à réaliser une exploitation intelligente de ressources ubiquitaires. Pour cela, nous proposons un méta-modèle de connaissances des principaux concepts à prendre en compte en environnement pervasif. Ce méta-modèle est basé sur des ontologies décrivant les différentes entités précitées dans un domaine donné ainsi que leurs relations. Puis, nous l’avons formalisé en utilisant un langage standard de description des connaissances. A partir de ce modèle, nous proposons alors une nouvelle méthodologie de construction d’un framework architectural, que nous avons appelé ONOF-PAS. ONOF-PAS est basé sur des modèles ontologiques, une base de règles, un moteur d’inférence, et des composants orientés objet permettant la gestion des différentes tâches et le traitement des ressources. Il s’agit d’une architecture générique, applicable à différents domaines. ONOF-PAS a la capacité d’effectuer un raisonnement à base de règles pour gérer les différents contextes d’utilisation et aider à la prise de décision dans des environnements hétérogènes dynamiques, tout en tenant compte de la disponibilité et de la capacité des ressources humaines et matérielles requises par les diverses tâches et processus exécutés par des systèmes d’information pervasifs. Enfin, nous avons instancié ONOF-PAS dans le domaine de la télémédecine pour traiter le scénario de l’orientation des patients ou de personnes victimes de problèmes de santé en environnement hostile telles que la haute montagne ou des zones géographiquement isolées. Un prototype d’implémentation de ces scénarios, appelé T-TROIE a été développé afin de valider le framework ONOF-PAS. / The growing development and use of pervasive systems, equipped with increasingly sophisticated functionalities and communication means, offer fantastic potentialities of services, particularly in the eHealth and Telemedicine domains, for the benifit of each citizen, patient or healthcare professional. One of the current societal challenges is to enable a better exploitation of the available services for all actors involved in a given domain. Nevertheless, the multiplicity of the offered services, the systems functional variety, and the heterogeneity of the needs require the development of knowledge models of these services, systems functions, and needs. In addition, the distributed computing environments heterogeneity, the availability and potential capabilities of various human and material resources (devices, services, data sources, etc.) required by the different tasks and processes, the variety of services providing users with data, the interoperability conflicts between schemas and data sources are all issues that we have to consider in our research works. Our contribution aims to empower the intelligent exploitation of ubiquitous resources and to optimize the quality of service in ambient environment. For this, we propose a knowledge meta-model of the main concepts of a pervasive environment, such as Actor, Task, Resource, Object, Service, Location, Organization, etc. This knowledge meta-model is based on ontologies describing the different aforementioned entities from a given domain and their interrelationships. We have then formalized it by using a standard language for knowledge description. After that, we have designed an architectural framework called ONOF-PAS (ONtology Oriented Framework for Pervasive Applications and Services) mainly based on ontological models, a set of rules, an inference engine, and object oriented components for tasks management and resources processing. Being generic, extensible, and applicable in different domains, ONOF-PAS has the ability to perform rule-based reasoning to handle various contexts of use and enable decision making in dynamic and heterogeneous environments while taking into account the availability and capabilities of the human and material resources required by the multiples tasks and processes executed by pervasive systems. Finally, we have instantiated ONOF-PAS in the telemedicine domain to handle the scenario of the transfer of persons victim of health problems during their presence in hostile environments such as high mountains resorts or geographically isolated areas. A prototype implementing this scenario, called T-TROIE (Telemedicine Tasks and Resources Ontologies for Inimical Environments), has been developed to validate our approach and the proposed ONOF-PAS framework.
|
Page generated in 0.061 seconds