• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tecnologias adaptativas aplicadas na flexibilização de redes neurais artificiais e redes de Petri. / Adaptive technologies applied to flexibilization of artificial neural networks and Petri nets.

Guibu, Haroldo Issao 15 December 2017 (has links)
O objetivo deste trabalho é o estudo das tecnologias adaptativas aplicadas às redes neurais artificiais e às redes de Petri. Além disso, uma metodologia é proposta para estas aplicações a partir da definição de uma rede de Petri colorida adaptativa. Inicialmente, as redes neurais artificiais são estudadas do ponto de vista da extração de regras. Uma das críticas recorrentes às redes neurais artificiais é a característica de \"caixa preta\" das soluções, significando que as soluções escondem o mecanismo de funcionamento, deixando em dúvida a razão de seu funcionamento. A extração de regras a partir das redes neurais artificiais objetiva apresentar uma solução equivalente baseada em regras que para os especialistas em uma determinada área seja mais inteligível ou transparente. Outro ponto importante é a inserção de regras nas redes neurais artificiais. Esta inserção é possível a partir da versão baseada em regras das redes neurais artificiais. Um especialista humano em uma área muitas vezes cria um conjunto de regras que o auxiliam na compreensão do problema. Se estas regras forem inseridas ao conjunto de regras obtidas através dos dados, o novo conjunto de regras conterá ao mesmo tempo o conhecimento humano e o conhecimento extraído dos dados. As tecnologias adaptativas de extração e inserção de regras tornam as soluções mais flexíveis. As redes de Petri são, em certo sentido, complementares às redes neurais artificiais pois foram criadas para tratar os \"Sistemas a Eventos Discretos\" ou sistemas sequenciais, enquanto que as redes neurais artificiais possuem uma natureza combinatória. Muitas extensões foram propostas à redes de Petri ao longo dos anos e entre estas extensões aparecem associações de redes de Petri e redes neurais artificiais. Nestas associações, muitas técnicas desenvolvidas para as redes neurais artificiais foram incorporadas às redes de Petri como, por exemplo, as diversas formas de aprendizado. Utilizando a característica das redes de Petri de modelagem de sistemas sequenciais, a fase de treinamento das redes neurais artificiais pode ser controlada pela rede de Petri. Neste trabalho, a incorporação de regras à rede de Petri é examinada assim como a sua aplicação a sistemas de apoio à decisão e a sistemas de manufatura flexível. / The objective of this work is the study of adaptive technologies applied to artificial neural networks and Petri nets. In addition, a methodology is proposed for these applications from the definition of an adaptive color Petri net. Initially, artificial neural networks are studied from the point of view of rule extraction. One of the recurring criticisms of artificial neural networks is the \"black box\" feature of the solutions, meaning that the solutions hide the working mechanism, casting doubt on the reason for its operation. The extraction of rules from the artificial neural networks aims to present an equivalent solution based on rules that for the experts in a given area is more intelligible or transparent. Another important point is the insertion of rules in artificial neural networks. This insertion is possible from the rule-based version of artificial neural networks. A human expert in an area often creates a set of rules that aid in understanding the problem. If these rules are inserted into the set of rules obtained from the data, the new set of rules will contain at the same time the human knowledge and the knowledge extracted from the data. Adaptive rule extraction and insertion technologies make solutions more flexible. Petri nets are, in a sense, complementary to artificial neural networks as they were designed to treat \"Discrete Event Systems\" or sequential systems, while artificial neural networks have a combinatorial nature. Many extensions have been proposed to the Petri nets over the years and among these extensions appear associations of Petri nets and artificial neural networks. In these associations, many techniques developed for artificial neural networks were incorporated into Petri nets, such as the various forms of learning. Using the Petri nets feature of sequential modeling, the training phase of artificial neural networks can be controlled by the Petri net. In this work, the incorporation of rules into the Petri net is examined as well as its application to decision support systems and flexible manufacturing systems.
2

Tecnologias adaptativas aplicadas na flexibilização de redes neurais artificiais e redes de Petri. / Adaptive technologies applied to flexibilization of artificial neural networks and Petri nets.

Haroldo Issao Guibu 15 December 2017 (has links)
O objetivo deste trabalho é o estudo das tecnologias adaptativas aplicadas às redes neurais artificiais e às redes de Petri. Além disso, uma metodologia é proposta para estas aplicações a partir da definição de uma rede de Petri colorida adaptativa. Inicialmente, as redes neurais artificiais são estudadas do ponto de vista da extração de regras. Uma das críticas recorrentes às redes neurais artificiais é a característica de \"caixa preta\" das soluções, significando que as soluções escondem o mecanismo de funcionamento, deixando em dúvida a razão de seu funcionamento. A extração de regras a partir das redes neurais artificiais objetiva apresentar uma solução equivalente baseada em regras que para os especialistas em uma determinada área seja mais inteligível ou transparente. Outro ponto importante é a inserção de regras nas redes neurais artificiais. Esta inserção é possível a partir da versão baseada em regras das redes neurais artificiais. Um especialista humano em uma área muitas vezes cria um conjunto de regras que o auxiliam na compreensão do problema. Se estas regras forem inseridas ao conjunto de regras obtidas através dos dados, o novo conjunto de regras conterá ao mesmo tempo o conhecimento humano e o conhecimento extraído dos dados. As tecnologias adaptativas de extração e inserção de regras tornam as soluções mais flexíveis. As redes de Petri são, em certo sentido, complementares às redes neurais artificiais pois foram criadas para tratar os \"Sistemas a Eventos Discretos\" ou sistemas sequenciais, enquanto que as redes neurais artificiais possuem uma natureza combinatória. Muitas extensões foram propostas à redes de Petri ao longo dos anos e entre estas extensões aparecem associações de redes de Petri e redes neurais artificiais. Nestas associações, muitas técnicas desenvolvidas para as redes neurais artificiais foram incorporadas às redes de Petri como, por exemplo, as diversas formas de aprendizado. Utilizando a característica das redes de Petri de modelagem de sistemas sequenciais, a fase de treinamento das redes neurais artificiais pode ser controlada pela rede de Petri. Neste trabalho, a incorporação de regras à rede de Petri é examinada assim como a sua aplicação a sistemas de apoio à decisão e a sistemas de manufatura flexível. / The objective of this work is the study of adaptive technologies applied to artificial neural networks and Petri nets. In addition, a methodology is proposed for these applications from the definition of an adaptive color Petri net. Initially, artificial neural networks are studied from the point of view of rule extraction. One of the recurring criticisms of artificial neural networks is the \"black box\" feature of the solutions, meaning that the solutions hide the working mechanism, casting doubt on the reason for its operation. The extraction of rules from the artificial neural networks aims to present an equivalent solution based on rules that for the experts in a given area is more intelligible or transparent. Another important point is the insertion of rules in artificial neural networks. This insertion is possible from the rule-based version of artificial neural networks. A human expert in an area often creates a set of rules that aid in understanding the problem. If these rules are inserted into the set of rules obtained from the data, the new set of rules will contain at the same time the human knowledge and the knowledge extracted from the data. Adaptive rule extraction and insertion technologies make solutions more flexible. Petri nets are, in a sense, complementary to artificial neural networks as they were designed to treat \"Discrete Event Systems\" or sequential systems, while artificial neural networks have a combinatorial nature. Many extensions have been proposed to the Petri nets over the years and among these extensions appear associations of Petri nets and artificial neural networks. In these associations, many techniques developed for artificial neural networks were incorporated into Petri nets, such as the various forms of learning. Using the Petri nets feature of sequential modeling, the training phase of artificial neural networks can be controlled by the Petri net. In this work, the incorporation of rules into the Petri net is examined as well as its application to decision support systems and flexible manufacturing systems.
3

Uma arquitetura para sistemas supervis?rios industriais e sua aplica??o em processos de eleva??o artificial de petr?leo

Souza, Rodrigo Barbosa de 04 February 2005 (has links)
Made available in DSpace on 2014-12-17T14:56:06Z (GMT). No. of bitstreams: 1 RodrigoBS.pdf: 821976 bytes, checksum: 45f7062b292e641f0f7e595b2b356d60 (MD5) Previous issue date: 2005-02-04 / Petr?leo Brasileiro SA - PETROBRAS / The using of supervision systems has become more and more essential in accessing, managing and obtaining data of industrial processes, because of constant and frequent developments in industrial automation. These supervisory systems (SCADA) have been widely used in many industrial environments to store process data and to control the processes in accordance with some adopted strategy. The SCADA s control hardware is the set of equipments that execute this work. The SCADA s supervision software accesses process data through the control hardware and shows them to the users. Currently, many industrial systems adopt supervision softwares developed by the same manufacturer of the control hardware. Usually, these softwares cannot be used with other equipments made by distinct manufacturers. This work proposes an approach for developing supervisory systems able to access process information through different control hardwares. An architecture for supervisory systems is first defined, in order to guarantee efficiency in communication and data exchange. Then, the architecture is applied in a supervisory system to monitor oil wells that use distinct control hardwares. The implementation was modeled and verified by using the formal method of the Petri networks. Finally, experimental results are presented to demonstrate the applicability of the proposed solution / A utiliza??o de sistemas de supervis?o tem se tornado cada vez mais essencial ao acesso, gerenciamento e obten??o de dados dos processos industriais, devido ao constante e frequente desenvolvimento da automa??o industrial. Estes sistemas supervis?rios (SCADA) t?m sido amplamente utilizados em diversos ambientes industriais para armazenar dados do processo e control?-lo de acordo com alguma estrat?gia adotada. O hardware de controle de um sistema SCADA ? o conjunto de equipamentos respons?veis pela execu??o desta tarefa. O software de supervis?o SCADA acessa os dados dos processos atrav?s do hardware de controle e torna-os dispon?veis para os usu?rios. Atualmente, muitos sistemas de automa??o industrial utilizam softwares de supervis?o desenvolvidos pelo mesmo fabricante do hardware de controle. Normalmente, estes softwares n?o podem ser usados com equipamentos de controle de outros fabricantes. Este trabalho prop?e uma metodologia de desenvolvimento de sistemas de supervis?o capaz de acessar informa??es dos processos atrav?s de diferentes equipamentos de controle. Inicialmente, defini-se uma arquitetura para sistemas supervis?rios que garanta comunica??o e troca de dados eficientes. Em seguida, a arquitetura ? aplicada em um sistema de supervis?o de po?os de petr?leo que utilizam diferentes equipamentos de controle. A implementa??o foi modelada utilizando o m?todo formal de redes de Petri. Os resultados s?o apresentados para demonstrar a aplicabilidade da solu??o proposta
4

Fuzzy Petriho sítě pro expertní systémy / Fuzzy Petri Nets for Expert systems

Maksant, Jindřich January 2009 (has links)
The object of this thesis is proposal and practical implementation of expert system, whose knowledge base will be modeling by fuzzy Petri nets. The proposal is based on knowledge in theoretical analysis of diagnostic expert system and fuzzy Petri nets. This proposal is realised in programming language C#. There are described functions of program and it is made a model consultation with using two different knowledge base.

Page generated in 0.0393 seconds