• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling, monitoring and optimization of discrete event systems using Petri nets

Yan, Jiaxiang 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Yan, Jiaxiang. M.S.E.C.E., Purdue University, May 2013. Modeling, Monitoring and Optimization of Discrete Event Systems Using Petri Nets. Major Professor: Lingxi Li. In last decades, the research of discrete event systems (DESs) has attracts more and more attention because of the fast development of intelligent control strategies. Such control measures combine the conventional control strategies with discrete decision-making processes which simulate human decision-making processes. Due to the scale and complexity of common DESs, the dedicated models, monitoring methods and optimal control strategies for them are necessary. Among various DES models, Petri nets are famous for the advantage in dealing with asynchronous processes. They have been widely applied in intelligent transportation systems (ITS) and communication technology in recent years. With encoding of the Petri net state, we can also enable fault detection and identification capability in DESs and mitigate potential human errors. This thesis studies various problems in the context of DESs that can be modeled by Petri nets. In particular, we focus on systematic modeling, asynchronous monitoring and optimal control strategies design of Petri nets. This thesis starts by looking at the systematic modeling of ITS. A microscopic model of signalized intersection and its two-layer timed Petri net representation is proposed in this thesis, where the first layer is the representation of the intersection and the second layer is the representation of the traffic light system. Deterministic and stochastic transitions are both involved in such Petri net representation. The detailed operation process of such Petri net representation is stated. The improvement of such Petri net representation is also provided with comparison to previous models. Then we study the asynchronous monitoring of sensor networks. An event sequence reconstruction algorithm for a given sensor network based on asynchronous observations of its state changes is proposed in this thesis. We assume that the sensor network is modeled as a Petri net and the asynchronous observations are in the form of state (token) changes at different places in the Petri net. More specifically, the observed sequences of state changes are provided by local sensors and are asynchronous, i.e., they only contain partial information about the ordering of the state changes that occur. We propose an approach that is able to partition the given net into several subnets and reconstruct the event sequence for each subnet. Then we develop an algorithm that is able to reconstruct the event sequences for the entire net that are consistent with: 1) the asynchronous observations of state changes; 2) the event sequences of each subnet; and 3) the structure of the given Petri net. We discuss the algorithmic complexity. The final problem studied in this thesis is the optimal design method of Petri net controllers with fault-tolerant ability. In particular, we consider multiple faults detection and identification in Petri nets that have state machine structures (i.e., every transition in the net has only one input place and one output place). We develop the approximation algorithms to design the fault-tolerant Petri net controller which achieves the minimal number of connections with the original controller. A design example for an automated guided vehicle (AGV) system is also provided to illustrate our approaches.
2

Modeling, Analysis, and Simulation of Two Connected Intersections Using Discrete and Hybrid Petri Nets

Yaqub, Omar Seddeq Omar 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In recent decades, Petri nets (PNs) have been used to model traffic networks for different purposes, such as signal phase control, routing, and traffic flow estimation, etc. Because of the complex nature of traffic networks where both discrete and continuous dynamics come into play, the Hybrid Petri net (HPN) model becomes an important tool for the modeling and analysis of traffic networks. In Chapter 1 a brief historical summery about traffic systems control and then related work is mentioned followed by the major contributions in this research. Chapter 2 provides a theoretical background on Petri nets. In Chapter 3, we develop a HPN model for a single signalized intersection first, then we extend this model to study a simple traffic network that consists of two successive intersections. Time delays between different points of network are also considered in order to make the model suitable for analysis and simulation. In addition to HPN models, we also consider discrete Petri nets where their modeling simplicity enables the characterization of the occurrences of all events in the system. This discrete PN is particularly useful to give a higher-level representation of the traffic network and study its event occurrences and correlations. In Chapter 4, we build a discrete PN model to represent a traffic network with two successive intersections. However, we find that the model leads to unbounded places which cannot accurately reflect the dynamics of the traffic in terms of event occurrences. Hence, we introduce the Modified Binary Petri nets (MBPN) to overcome the limitation and resolve the confliction problem when we design our controllers. This MBPN model is a powerful tool and can be useful for the modeling and analysis of many other applications in traffic networks. Chapter 5 gives a summary for each chapter, provides conclusion and discusses future work for both discrete and hybrid Petri nets.

Page generated in 0.1007 seconds