• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Petrophysical modeling and simulatin study of geological CO₂ sequestration

Kong, Xianhui 24 June 2014 (has links)
Global warming and greenhouse gas (GHG) emissions have recently become the significant focus of engineering research. The geological sequestration of greenhouse gases such as carbon dioxide (CO₂) is one approach that has been proposed to reduce the greenhouse gas emissions and slow down global warming. Geological sequestration involves the injection of produced CO₂ into subsurface formations and trapping the gas through many geological mechanisms, such as structural trapping, capillary trapping, dissolution, and mineralization. While some progress in our understanding of fluid flow in porous media has been made, many petrophysical phenomena, such as multi-phase flow, capillarity, geochemical reactions, geomechanical effect, etc., that occur during geological CO₂ sequestration remain inadequately studied and pose a challenge for continued study. It is critical to continue to research on these important issues. Numerical simulators are essential tools to develop a better understanding of the geologic characteristics of brine reservoirs and to build support for future CO₂ storage projects. Modeling CO₂ injection requires the implementation of multiphase flow model and an Equation of State (EOS) module to compute the dissolution of CO₂ in brine and vice versa. In this study, we used the Integrated Parallel Accurate Reservoir Simulator (IPARS) developed at the Center for Subsurface Modeling at The University of Texas at Austin to model the injection process and storage of CO₂ in saline aquifers. We developed and implemented new petrophysical models in IPARS, and applied these models to study the process of CO₂ sequestration. The research presented in this dissertation is divided into three parts. The first part of the dissertation discusses petrophysical and computational models for the mechanical, geological, petrophysical phenomena occurring during CO₂ injection and sequestration. The effectiveness of CO₂ storage in saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental data reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO₂ and brine. The dependence of CO₂-brine relative permeability and capillary pressure on IFT is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO₂ in the subsurface is crucial to design future storage projects for long-term, safe containment. We have developed numerical models for CO₂ trapping and migration in aquifers, including a compositional flow model, a relative permeability model, a capillary model, an interfacial tension model, and others. The heterogeneities in porosity and permeability are also coupled to the petrophysical models. We have developed and implemented a general relative permeability model that combines the effects of pressure gradient, buoyancy, and capillary pressure in a compositional and parallel simulator. The significance of IFT variations on CO₂ migration and trapping is assessed. The variation of residual saturation is modeled based on interfacial tension and trapping number, and a hysteretic trapping model is also presented. The second part of this dissertation is a model validation and sensitivity study using coreflood simulation data derived from laboratory study. The motivation of this study is to gain confidence in the results of the numerical simulator by validating the models and the numerical accuracies using laboratory and field pilot scale results. Published steady state, core-scale CO₂/brine displacement results were selected as a reference basis for our numerical study. High-resolution compositional simulations of brine displacement with supercritical CO₂ are presented using IPARS. A three-dimensional (3D) numerical model of the Berea sandstone core was constructed using heterogeneous permeability and porosity distributions based on geostatistical data. The measured capillary pressure curve was scaled using the Leverett J-function to include local heterogeneity in the sub-core scale. Simulation results indicate that accurate representation of capillary pressure at sub-core scales is critical. Water drying and the shift in relative permeability had a significant impact on the final CO₂ distribution along the core. This study provided insights into the role of heterogeneity in the final CO₂ distribution, where a slight variation in porosity gives rise to a large variation in the CO₂ saturation distribution. The third part of this study is a simulation study using IPARS for Cranfield pilot CO₂ sequestration field test, conducted by the Bureau of Economic Geology (BEG) at The University of Texas at Austin. In this CO₂ sequestration project, a total of approximately 2.5 million tons supercritical CO₂ was injected into a deep saline aquifer about ~10000 ft deep over 2 years, beginning December 1st 2009. In this chapter, we use the simulation capabilities of IPARS to numerically model the CO₂ injection process in Cranfield. We conducted a corresponding history-matching study and got good agreement with field observation. Extensive sensitivity studies were also conducted for CO₂ trapping, fluid phase behavior, relative permeability, wettability, gravity and buoyancy, and capillary effects on sequestration. Simulation results are consistent with the observed CO₂ breakthrough time at the first observation well. Numerical results are also consistent with bottomhole injection flowing pressure for the first 350 days before the rate increase. The abnormal pressure response with rate increase on day 350 indicates possible geomechanical issues, which can be represented in simulation using an induced fracture near the injection well. The recorded injection well bottomhole pressure data were successfully matched after modeling the fracture in the simulation model. Results also illustrate the importance of using accurate trapping models to predict CO₂ immobilization behavior. The impact of CO₂/brine relative permeability curves and trapping model on bottom-hole injection pressure is also demonstrated. / text
2

Reservoir description with well-log-based and core-calibrated petrophysical rock classification

Xu, Chicheng 25 September 2013 (has links)
Rock type is a key concept in modern reservoir characterization that straddles multiple scales and bridges multiple disciplines. Reservoir rock classification (or simply rock typing) has been recognized as one of the most effective description tools to facilitate large-scale reservoir modeling and simulation. This dissertation aims to integrate core data and well logs to enhance reservoir description by classifying reservoir rocks in a geologically and petrophysically consistent manner. The main objective is to develop scientific approaches for utilizing multi-physics rock data at different time and length scales to describe reservoir rock-fluid systems. Emphasis is placed on transferring physical understanding of rock types from limited ground-truthing core data to abundant well logs using fast log simulations in a multi-layered earth model. Bimodal log-normal pore-size distribution functions derived from mercury injection capillary pressure (MICP) data are first introduced to characterize complex pore systems in carbonate and tight-gas sandstone reservoirs. Six pore-system attributes are interpreted and integrated to define petrophysical orthogonality or dissimilarity between two pore systems of bimodal log-normal distributions. A simple three-dimensional (3D) cubic pore network model constrained by nuclear magnetic resonance (NMR) and MICP data is developed to quantify fluid distributions and phase connectivity for predicting saturation-dependent relative permeability during two-phase drainage. There is rich petrophysical information in spatial fluid distributions resulting from vertical fluid flow on a geologic time scale and radial mud-filtrate invasion on a drilling time scale. Log attributes elicited by such fluid distributions are captured to quantify dynamic reservoir petrophysical properties and define reservoir flow capacity. A new rock classification workflow that reconciles reservoir saturation-height behavior and mud-filtrate for more accurate dynamic reservoir modeling is developed and verified in both clastic and carbonate fields. Rock types vary and mix at the sub-foot scale in heterogeneous reservoirs due to depositional control or diagenetic overprints. Conventional well logs are limited in their ability to probe the details of each individual bed or rock type as seen from outcrops or cores. A bottom-up Bayesian rock typing method is developed to efficiently test multiple working hypotheses against well logs to quantify uncertainty of rock types and their associated petrophysical properties in thinly bedded reservoirs. Concomitantly, a top-down reservoir description workflow is implemented to characterize intermixed or hybrid rock classes from flow-unit scale (or seismic scale) down to the pore scale based on a multi-scale orthogonal rock class decomposition approach. Correlations between petrophysical rock types and geological facies in reservoirs originating from deltaic and turbidite depositional systems are investigated in detail. Emphasis is placed on the cause-and-effect relationship between pore geometry and rock geological attributes such as grain size and bed thickness. Well log responses to those geological attributes and associated pore geometries are subjected to numerical log simulations. Sensitivity of various physical logs to petrophysical orthogonality between rock classes is investigated to identify the most diagnostic log attributes for log-based rock typing. Field cases of different reservoir types from various geological settings are used to verify the application of petrophysical rock classification to assist reservoir characterization, including facies interpretation, permeability prediction, saturation-height analysis, dynamic petrophysical modeling, uncertainty quantification, petrophysical upscaling, and production forecasting. / text

Page generated in 0.0882 seconds