• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Approche combinée expérimentale et mathématique pour la personnalisation sur base moléculaire des thérapies anticancéreuses standards et chronomodulées / A combined experimental and mathematical approach for molecular-based personalization of chronomodulated and standard anticancer therapies

Ballesta, Annabelle 15 June 2011 (has links)
Personnaliser les traitements anticancéreux sur base moléculaire consiste à optimiser la thérapie en fonction des profils d'expression de gènes des cellules saines et tumorales du patient. Les différences au niveau moléculaire entre tissus normaux et cancéreux sont exploitées afin de maximiser l'efficacité du traitement et minimiser sa toxicité. Cette thèse propose une approche pluridisciplinaire expérimentale et mathématique ayant pur but la détermination de stratégies anticancéreuses optimales sur base moléculaire. Cette approche est, tout d'abord, mise en œuvre pour la personnalisation de la chronothérapeutique des cancers, puis pour l'optimisation de la thérapie anticancéreuse dans le cas d'une mutation de l'oncogène SRC. La plupart des fonctions physiologiques chez les mammifères présentent une rythmicité circadienne, c'est-à-dire de période environ égale à 24 h. C'est par exemple le cas de l'alternance activité-repos, de la température corporelle, et de la concentration intracellulaire d'enzymes du métabolisme. Ces rythmes ont pour conséquence une variation de la toxicité et de l'efficacité d'un grand nombre de médicaments anticancéreux selon leur heure circadienne d'administration. De récentes études soulignent la nécessité d'adapter les schémas d'injection chronomodulés au profil moléculaire du patient. La première partie de cette thèse propose une approche combinée expérimentale et modélisatrice pour personnaliser sur base moléculaire la chronothérapie. La première étape a consisté en une preuve de concept impliquant des expérimentations in vitro sur cultures de cellules humaines et des travaux de modélisation in silico. Nous nous sommes focalisés sur l'étude de l'irinotecan (CPT11), un médicament anticancéreux actuellement utilisé en clinique dans le traitement des cancers colorectaux, et présentant des rythmes de chronotoxicité et de chronoefficacité chez la souris et chez l'homme. Sa pharmacocinétique (PK) et pharmacodynamie (PD) moléculaires ont été étudiées dans la lignée de cellules d'adénocarcinome colorectal humain Caco-2. Un modèle mathématique de la PK-PD moléculaire du CPT11, à base d'équations différentielles ordinaires, a été conçu. Il a guidé l'expérimentation qui a été réalisée dans le but de d'évaluer les paramètres du modèle. L'utilisation de procédures d'optimisation, appliquées au modèle calibré aux données biologiques, a permis la conception de schéma d'exposition au CPT11 théoriquement optimaux dans le cas particulier des cellules Caco-2. Le CPT11 s'est accumulé dans les cellules Caco-2 où il a été biotransformé en son métabolite actif le SN38, sous l'action des carboxylestérases (CES). La pré-incubation des cellules avec du verapamil, un inhibiteur non spécifique des transporteurs ABC (ATP-Binding Cassette) a permis la mise en évidence du rôle de ces pompes d'efflux ABC dans le transport du CPT11. Après synchronisation des cellules par choc sérique, qui définit le temps circadien (CT) 0, des rythmes circadiens d'une période de 26 h 50 (SD 63 min) ont été mis en évidence pour l'expression de trois gènes de l'horloge circadienne: REV-ERBα, PER2, et BMAL1; et six gènes de la pharmacologie du CPT11: la cible du médicament la topoisomerase 1 (TOP1), l'enzyme d'activation CES2, l'enzyme de désactivation UGT1A1, et les quatre transporteurs ABCB1, ABCC1, ABCC2, ABCG2. Au contraire, l'expression protéique et l'activité de la TOP1 sont restées constantes. Enfin, la quantité de TOP1 liée à l'ADN en présence de CPT11, un marqueur de la PD du médicament, a été plus importante pour une exposition à CT14 (47±5.2% de la quantité totale de TOP1), que pour une exposition à CT28 (35.5±1.8%). Les paramètres du modèle mathématique de la PK-PD du CPT11 ont ensuite été estimés par une approche de bootstrap, en utilisant des résultats expérimentaux obtenus sur les cellules Caco-2, combinés aux données de la littérature. Ensuite, des algorithmes d'optimisation ont été utilisés pour concevoir les schémas d'exposition théoriquement optimaux des cellules Caco-2 à l'irinotecan. Les cellules synchronisées par un choc sérique ont été considérées comme les cellules saines et les cellules non-synchronisées ont joué le rôle de cellules cancéreuses puisque l'organisation circadienne est souvent perturbée dans les tissus tumoraux. La stratégie thérapeutique optimale a été définie comme celle qui maximise l'efficacité sur les cellules cancéreuses, sous une contrainte de toxicité maximale sur les cellules saines. Les schémas d'administration considérés ont pris la forme d'une exposition à une concentration donnée de CPT11, débutant à un CT particulier, sur une durée comprise entre 0 et 27 h. Les simulations numériques prédisent que toute dose de CPT11 devrait être optimalement administrée sur une durée de 3h40 à 7h10, débutant entre CT2h10 et CT2h30, un intervalle de temps correspondant à 1h30 à 1h50 avant le minimum des rythmes de bioactivation du CPT11 par les CES. Une interprétation clinique peut être établie en ramenant à 24 h ces résultats pour les cellules Caco-2 qui présentent une période de 27 h. Ainsi, une administration optimale du CPT11 chez le patient cancéreux résulterait en une présence du médicament dans le sang pendant 3h30 à 6h30, débutant de 1h30 à 1h40 avant le minimum des rythmes d'activité des CES chez le patient. La deuxième étape de nos travaux a consisté à adapter l'approche mise en œuvre pour optimiser l'exposition des cellules Caco-2 au CPT11, pour l'optimisation de l'administration du médicament chez la souris. Des études récentes mettent en évidence trois classes de chronotoxicité à l'irinotecan chez la souris. La classe 1, les souris de la lignée B6D2F1 femelles, présentent la pire tolérabilité au CPT11 après une administration à ZT3, et la meilleure pour une administration à ZT15, où ZT est le temps de Zeitgeber, ZT0 définissant le début de la phase de lumière. La classe 2, les souris B6D2F1 mâles, montrent une pire heure d'administration à ZT23 et une meilleure à ZT11. Enfin, la classe 3, les B6CBAF1 femelles présentent la pire tolérabilité pour une injection à ZT7, et la meilleure pour ZT15. Nous avons entrepris une approche pluridisciplinaire in vivo et in silico dont le but est la caractérisation moléculaire des trois classes de chronotoxicité, ainsi que la conception de schémas optimaux d'administration pour chacune d'elles. Le modèle mathématique mis au point pour une population de cellules en culture a été adapté pour la construction d'un modèle "corps entier" à base physiologique de la PK-PD de l'irinotecan. Un ensemble de paramètres a été estimé pour la classe 2, en utilisant deux sortes de résultats expérimentaux: d'une part, les concentrations sanguines et tissulaires (foie, colon, moelle osseuse, tumeur) du CPT11 administré aux pire et meilleure heures circadiennes de tolérabilité, et d'autre part, les variations circadiennes des protéines de la pharmacologie du médicament dans le foie et l'intestin. Le modèle ainsi calibré reproduit de façon satisfaisante les données biologiques. Cette étude est en cours pour les classes 1 et 3. Une fois les ensembles de paramètres validés pour chacune des trois classes, ils seront comparés entre eux pour mettre en évidence de possibles différences moléculaires. L'étape suivante consiste en l'application d'algorithmes d'optimisation sur le modèle corps entier pour définir des schémas d'administration chronomodulés optimaux pour chaque classe. La deuxième partie de cette thèse s'intéresse à l'étude de la tyrosine kinase SRC, dont l'expression est dérégulée dans de nombreux cancers. Des études récentes montrent un contrôle de SRC sur la voie mitochondriale de l'apoptose dans des fibroblastes de souris NIH-3T3 transfectés avec l'oncogène v-src, cette régulation étant inexistante dans les cellules parentales. L'oncogène SRC active la voie RAS / RAK / MEK1/2 / ERK1/2 qui augmente la vitesse de phosphorylation de la protéine pro-apoptotique BIK, menant ainsi à sa dégradation par le protéasome. La faible expression de BIK résultant de ce mécanisme rendrait ainsi les cellules v-src résistantes à la plupart des stress apoptotiques. Notre étude a consisté à déterminer, par une approche combinée mathématique et expérimentale, les stratégies thérapeutiques optimales lorsque les cellules NIH-3T3 parentales jouent le rôle de cellules saines, et les fibroblastes transformés celui de cellules cancéreuses. Pour cela, nous avons, tout d'abord, construit un modèle mathématique de la cinétique de BIK en conditions non-apoptotiques. L'estimation des paramètres de ce modèle, en utilisant des données expérimentales existantes, confirme que la phosphorylation de BIK sous le contrôle de SRC est inactive dans les cellules normales. L'étude exprimentale de l'évolution de BIK après le signal apoptotique que constitue une exposition à la staurosporine, démontre une relocalisation de BIK aux mitochondries, la concentration totale de la protéine restant constante durant le stress. Nous avons ensuite conçu un modèle mathématique de la voie mitochondriale de l'apoptose mettant en jeu les protéines anti-apoptotiques de type Bcl2, les protéines effectrices de type BAX, les protéines BH3-only activatrices et les BH3-only sensibilisatrices. Un ensemble de paramètres a été déterminé pour les cellules NIH-3T3 parentales, et celles transformées v-src, en comparant le modèle aux données expérimentales. Le modèle reproduit le fait expérimentalement démontré que la préincubation des cellules v-src avec un inhibiteur de la tyrosine kinase SRC, avant l'exposition à la staurosporine, annihile la résistance des fibroblastes transformés au stress apoptotique. Le modèle prédit que l'administration de l'ABT-737, un inhibiteur de protéines anti-apoptotiques, avant l'exposition à la staurosporine, ne devrait pas être entreprise dans notre systéme biologique, ce qui a été expérimentalement validé. Enfin, le modèle a été utilisé dans des procédures d'optimisation pour déterminer la stratégie thérapeutique théoriquement optimale, lorsque les cellules normales et transformées sont exposées aux mêmes médicaments. Les combinaisons médicamenteuses considérées consiste en une exposition à la staurosporine, précédée d'une exposition à des répresseurs ou activateurs d'expression des protéines de la famille Bcl2. La stratégie optimale est définie comme celle qui maximise le pourcentage de cellules apoptotiques dans les fibroblastes v-src, sous la contrainte que celui dans les cellules normales reste au-dessous d'un seuil de tolérabilité. Les simulations numériques nous permettent de conclure à une combinaison médicamenteuse optimale constituée d'une exposition à la staurosporine, précédée d'une exposition à un répresseur de l'expression de BAX (de manière à diminuer sa concentration en-dessous du seuil apoptotique dans les cellules normales, mais pas dans les cellules cancéreuses), combinée à un répresseur de BCL2 ou un inhibiteur de tyrosines kinases SRC. Cette stratégie optimale aboutit à moins d'1% de cellules apoptotiques dans les cellules saines et plus de 98% dans les cellules cancéreuses. / Personalizing anticancer treatment on molecular basis consists in optimizing the therapy according to the gene expression profiles of healthy and cancer cells of the patient. The molecular differences between normal and tumor tissues are exploited in order to maximize the treatment efficacy and minimize its toxicities. This PhD thesis presents a combined mathematical and experimental approach to optimize anticancer therapeutic strategies on molecular basis. This approach has been undertaken at first for the personalization of cancer chronotherapeutics, and secondly for the optimization of anticancer therapy in the case of mutated SRC oncogene. Most of the physiological functions in mammals display rhythms of period around 24, also called circadian rhythms. For instance, rest-activity rhythm, core temperature, or intracellular concentrations of metabolic enzymes show variations over the 24 h span. Those rhythms result in variations in the toxicity and efficacy of many anticancer drug with respect to their circadian time of administration. Recent studies highlight the need for chronomodulated injection scheme which would be tailored to the patient's molecular profile. Thus the first sections of this thesis propose a combined experimental and mathematical approach for personalizing cancer chronotherapeutics on molecular basis. The first step consisted in a proof of concept which involved in vitro experiments on human cell culture and in silico mathematical modeling. We focused on the anticancer drug irinotecan (CPT11), which is currently used in the treatment of colorectal cancer and displays chronotoxicity and chronoefficacy rhythms both in mice and in cancer patients. Its molecular pharmacokinetics (PK) and pharmacodynamics (PD) were studied in human colorectal adenocarcinoma Caco-2 cells. An ODE-based mathematical model of its PK-PD was built. It guided the design of experiments which were performed in order to estimate parameter values of the model. Optimization procedures were then applied to this data-calibrated model in order to compute theoretically optimal exposure schemes for the Caco-2 cell line. CPT11 accumulated in Caco-2 cells where it was bioactivated into SN38 under the catalytic activity of carboxylesterases (CES). The pre-incubation of cells with verapamil, a non-specific inhibitor of ATP-Binding Cassette (ABC) transporters, increased CPT11 intracellular accumulation, thus demonstrating the involvement of those efflux pumps in CPT11 transport. After cell synchronization by a seric shock which defines the circadian time (CT) 0, circadian rhythm of period 26 h 50 (SD 63 min) were observed for the expression of the three clock genes REV-ERBα, PER2, and BMAL1; and of six metabolic genes: the drug target topoisomerase 1 (TOP1), the activation enzyme CES2, the deactivation enzyme UGT1A1, and the four ABC transporters ABCB1, ABCC1, ABCC2, ABCG2. On the contrary, TOP1 proteic level and activity remained constant. The amount of DNA-bound TOP1 in the presence of CPT11 is a PD marker of the drug and displayed circadian rhythms as it was equal to 47±5.2% of the total amount of TOP1 protein after an exposure at CT14, as compared to 35.5±1.8% after an exposure at CT28. Parameters of CPT11 PK-PD model were estimated from experimental data in Caco-2 cells combined to information from literature by a bootstrap approach. Optimization procedures were then applied to the data-calibrated model in order to compute theoretically optimal exposure schemes for Caco-2 cells. Synchronized cells were considered as healthy cells and non-synchronized cells as cancer ones as the circadian organization is often disrupted in tumor tissues. The adopted therapeutics strategy consisted in maximizing DNA damage in cancer cells under the constraint that DNA damage in the healthy population remained under a tolerability threshold. We considered administration schemes in the form of a cell exposure to an initial extracellular concentration of CPT11, over 1 to 27 h, starting at a particular CT. Numerical procedures predicted that, for all considered doses of CPT11, the optimal exposure lasted from 3h40 to 7h10, and started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the minimum value of CES activity. A clinical interpretation can be obtained by rescaling to 24 h those results for Caco-2 cells which displayed a period of 26 h 50. Thus, an optimal administration of CPT11 to cancer patients should result in the presence of the drug in the blood during 3h30 to 6h30, starting 1h30 to 1h40 before the minimum value of CES activity in the patient. The second section of our research works has consisted in adapting the pluridisciplinary approach we have undertaken for optimizing CPT11 exposure in Caco-2 cells, for the optimization of CPT11 administration in mice. Recent experimental studies demonstrated the existence of three classes of mice regarding CPT11 chronotoxicity. Female mice of the strain B6D2F1 represented the first class and showed worst tolerability after an injection of CPT11 at ZT3 and best tolerability at ZT15, where ZT is Zeitgeber Time, ZT0 defining the beginning of the light phase. Class 2 was constituted by B6D2F1 male mice and displayed worst toxicity at ZT23 and best toxicity at ZT11. Finally, class 3 was B6CBAF1 female mice and showed worst tolerability at ZT7 and best tolerability at ZT15. Our combined in vivo and in silico approach aimed at characterizing the three chronotoxicity classes at the molecular level and at designing optimal administration schemes for each of them. The mathematical model which was built for Caco-2 cell culture was adapted to design a whole body physiologically based model of CPT11 PK-PD. Parameters were estimated for class 2 by fitting both blood and tissular pharmacokinetics data and measurements of circadian rhythms of proteins involved in CPT11 pharmacology. The calibrated model fitted the biological data. Similar parameter estimations are ongoing for classes 1 and 3. Once three parameter sets are estimated, their comparaison will allow the determination of differences in protein activities and therefore the molecular characterization of the three classes. The next step consists in applying optimization procedures to the calibrated whole body model in order to design theoretically optimal administration schemes for each class. The second project presented in this thesis focuses on the tyrosine kinase SRC, which is deregulated in numerous cancer diseases. Recent studies showed that SRC exerted a control on the mitochondrial pathway of apoptosis in NIH-3T3 mice fibroblasts which were transfected with the oncogene v-src, whereas this control was not observed in parental NIH-3T3 cells. SRC activated the RAS / RAK / MEK1/2 / ERK1/2 pathway which enhanced the phosphorylation of the pro-apoptotic enzyme BIK, thus leading to the protein degradation by the proteasome. As a result, BIK protein expression was low in v-src transformed fibroblasts which possibly contributed to the resistance of those cells to most apoptotic stresses. Our work consisted in designing optimal therapeutics strategies in which parental NIH-3T3 fibroblasts stands for healthy cells and v-src transformed ones for cancer cells. Once again, a combined experimental and mathematical approach was undertaken. First, we built a model for BIK kinetics in non-apoptotic conditions and fitted its parameters to existing experimental data. Estimated parameter values confirmed that SRC-dependent phosphorylation of BIK was inactive in normal cells. Then, we biologically and mathematically investigated BIK kinetics in response to a death signal. We showed a relocalization of BIK to the mitochondria in the first hours of staurosporine exposure, whereas BIK protein total amount remained constant during the apoptotic stress. We then conceived a mathematical model of the mitochondrial pathway of apoptosis in NIH-3T3 cells. It modeled molecular interactions between the anti-apoptotic proteins as BCL2, and the pro-apoptotic enzymes which were divided into three subgroups: the BAX-like effector proteins, the BH3-only activator proteins and the BH3-only sensitizer proteins. Parameters were estimated by fitting experimental results in normal and v-src transformed fibroblasts. The model reproduced the experimentally-demonstrated fact that pre-incubating v-src fibroblasts with an inhibitor of SRC before staurosporine exposure annihilated the cell resistance. The model predicted that an administration of ABT-737, an inhibitor of anti-apoptotic proteins, before staurosporine exposure, should not be undertaken in our particular biological systems, which was experimentally validated. Finally, optimization procedures were applied to the model in order to design optimal therapeutics strategies when both normal and cancer cells were exposed to the same drugs. Considered exposure scheme consisted in the administration of staurosporine after an exposure to activator or of proteins of the mitochondrial pathway of apoptosis. Optimal strategies were defined as the ones which maximized the percentage of apoptotic cells in the cancer cell population, under the constraint that that in the healthy population remained below a toxicity threshold. Optimization procedures allowed to conclude that the optimal drug combinaison consisted in exposing cells to staurosporine after an exposure to a chemical able to repress BAX expression such that its concentration in normal cells was below the needed amount to trigger apoptosis, combined either to a repressor of anti-apoptotic proteins, or an inhibitor of SRC. These optimal strategies led to less than 1% of apoptotic cells in healthy cells, and more than 98% in cancer cells.
12

Pharmacokinetics/Pharmacodynamics and Analysis of the Effect of ??-Amyloid Peptide on Acetylcholine Neurocycle and Alzheimer???s Disease Medications

Awad, Asmaa January 2013 (has links)
The brain of Alzheimer???s disease (AD) is characterized by accumulations of ??-amyloid peptide aggregates which promote neurodegentartive dysfunction. Comprehensive understanding of the interaction between ??-amyloid aggregates and acetylcholine (ACh) neurocycle is required to uncover the physiological processes related to AD and might result in improving therapeutic approaches for AD. Pharmacokinetics (PK) and pharmacodynamics (PD) techniques were applied to allow predicting the extent of the interaction of certain doses of AD drugs and ??-amyloid inhibitors and levels of ACh as well. Although many researchers focused on the ??-amyloid interactions, the mechanisms by which ??-amyloid affects cholinergic neurons and reduction of ACh are still unclear. The prediction of ACh and drug concentrations in the tissues and body needs an understanding of the physiology and mechanisms of ??-amyloid aggregates processes and their compilation into a mechanistic model In this work, two hypotheses are proposed to investigate the dynamic behavior of the interaction between ??-amyloid peptide aggregates and cholinergic neurocycle and the possible therapeutic approaches through proposing pharmacokinetic/pharmacodynamics (PK/PD) models to represent the impact of ??-amyloid aggregates in AD. The effect of ??-amyloid peptide aggregates is formulated through incorporating ??- amyloid aggregates into non-linear model for the neurocycle of ACh where the presynaptic neuron is considered as compartment 1 and both synaptic cleft and postsynaptic neurons are considered as compartment 2. In the first hypothesis which is choline leakage hypothesis, ??-amyloid peptide aggregates are considered to be located in the membrane of the presynaptic neuron and create pathways inside the membrane to allow for the intracellular choline to leak outside the cholinergic system. It is observed that ??-amyloid aggregates via the choline leakage hypothesis could cause significant reductions of ACh and choline levels in both compartments. Furthermore, the process rates of ACh synthesis and hydrolysis have been affected negatively by a wide range of ??-amyloid aggregate concentrations. It is found that as the input rate of ??-amyloid aggregates to compartment 1 increases, the loss of choline from compartment 1 increases leading to an increase in the intracellular concentration of ??-amyloid. In the second hypothesis, ??-amyloid peptide aggregates are proposed to interact with the enzyme ChAT which is responsible for the synthesis of ACh in compartment 1; three different kinetic mechanisms are suggested to account for the interaction between ??-amyloid aggregates and ChAT activity. In the first and second kinetic mechanisms, ??-amyloid aggregate is supposed to attack different species in the enzyme. It is found that there is a significant decrease in the rate of ACh synthesis in compartment 1 and ACh concentrations in both compartments. However, it is observed that there is no effect on choline levels in both compartments, the rate of ACh hydrolysis in compartment 2, pH, and ACh levels in compartment 2. In the third kinetic mechanism, all species in ChAT are attacked by ??-amyloid aggregates; it is observed that at very high input rates of ??-amyloid aggregates, the oscillatory behavior dominates all components of the neurocycle of ACh. The disturbance observed in ACh levels in both compartments explains the harmful effect of the full attack of ??-amyloid aggregates to all species of ChAT. It is found that to contribute significantly in ACh neurocycle, choline leakage hypothesis needs concentration of ??-amyloid aggregates lower than that needed in ChAT activity hypothesis which is in agreement with experimental observations. The significant decrease in ACh levels observed in both choline leakage and loss of ChAT activity hypotheses leads to cognitive loss and memory impairment which were observed in individuals with AD. A one-compartment drug PK/PD model is proposed to investigate a therapeutic approach for inhibiting ??-amyloid aggregation via choline leakage hypothesis where the maximum feed rate of ??-amyloid (KL2 = 1) is considered. The drug is assumed to interact with the tissues of the presynaptic neurons where ??-amyloid aggregates are located. The PK/PD model is built based on the effect of ??-amyloid aggregates via choline leakage hypothesis where the maximum feed rate of ??-amyloid aggregates is considered. The dynamic behavior of all concentrations of ??-amyloid aggregates, choline, ACh, acetate, and pH in both compartments in addition to the rate of ACh synthesis in compartment 1 and ACh hydrolysis are investigated by monitoring the impacts of the drug on ??-amyloid aggregates and cholinergic neurocycle over a wide range of the input drug dosage. The PK/PD model is able to predict the reduction in levels of ??-amyloid aggregates and the increase in choline and ACh, in both compartments as well as both rates of ACh synthesis and hydrolysis catalyzed. The parameters of the PK/PD model such as maximum concentration (Cmax), maximum time (Tmax), area under the curve (AUC), and maximum effect (Emax) were investigated. It was found that it takes a longer time (Tmax) (3-5 h) to reach Emax as the drug dose increases. Furthermore, AUC was found to increase with increasing drug dosage. The results of the current work show that drugs / therapeutic agents inhibiting ??- amyloid aggregation in the brain represent a likely successful therapeutic approach to give systematic highlights to develop future trials, new diagnostic techniques, and medications for AD. This study is helpful in designing PK and PD and developing experimental animal models to support AD drug development and therapy in the future.
13

Pharmacological characterisation of selected pyrrolobenzodiazepines as anti-cancer agents : pharmacokinetic and pharmacodynamic characterisation of the pyrrolobenzodiazepine dimer SJG-136 and the monomers D709119, MMY-SJG and SJG-303

Wilkinson, Gary Paul January 2004 (has links)
This study aimed to investigate the pharmacology of selected pyrrolobenzodiazepine (PBD) compounds shown to have cytotoxic activity with predicted DNA sequence selectivity. Research focused upon the PBD dimer, SJG-136, selected for clinical trials, and the novel PBD monomer compounds D709119, MMY-SJG and SJG-303. SJG-136, a novel sequence-selective DNA minor groove cross-linking agent, was shown to have potent tumour cell type selective cytotoxicity in in vitro assays. Pharmacokinetic studies in mice via both the i.p. and i.v. route (dosed at the maximum tolerated dose (MTD)) showed that SJG-136 reaches concentrations in plasma well in excess of the in vitro IC50 values for 1 h exposure, and was detected in tumour and brain samples also above the in vitro IC50 values. Furthermore, SJG-136 showed linear pharmacokinetics over a 3-fold drug dose range. Metabolism studies showed SJG-136 is readily metabolised in vitro by hepatic microsomes, predominantly to a monodemethylated metabolite; this metabolite could be detected in vivo. Analytical method development work was also conducted for the imminent Phase I clinical trial of SJG-136 resulting in a sensitive and selective bio-analytical detection protocol. Comet analysis showed that SJG-136 dosed at the MTD and ⅓MTD causes significant interstrand DNA cross-linking in lymphocytes in vivo. In vitro studies demonstrated that SJG-136 localises within the cell nucleus, and acts to disrupt cell division via a G2/M block in the cell cycle at realistic concentrations and exposure times that are achievable in vivo. In vivo pharmacokinetic studies of D709119 showed the compound is easily detectable in mouse plasma following i.p. dosing at the MTD, but could not be detected in either tumour or brain samples. In vitro cytotoxicity studies revealed D709119 to have potent activity across a selection of tumour cell lines. SJG-136, D709119, MMY-SJG, SJG-303 and DC-81 demonstrated a non-enzyme-catalysed reactivity with the biologically relevant thiol, reduced glutathione (GSH). Studies demonstrated that reactivity of the PBD compounds toward GSH was dependent on GSH concentrations. At levels of GSH found in plasma, the PBD compounds showed considerably lower reactivity with GSH than at intracellular GSH levels. SJG-136 and D709119 also showed favourable pharmacokinetic profiles in mice, and warrant further study for anti-tumour activity in vivo and progression to use in patients.
14

Pharmacological characterisation of selected pyrrolobenzodiazepines as anti-cancer agents. Pharmacokinetic and pharmacodynamic characterisation of the pyrrolobenzodiazepine dimer SJG-136 and the monomers D709119, MMY-SJG and SJG-303

Wilkinson, Gary P. January 2004 (has links)
This study aimed to investigate the pharmacology of selected pyrrolobenzodiazepine (PBD) compounds shown to have cytotoxic activity with predicted DNA sequence selectivity. Research focused upon the PBD dimer, SJG-136, selected for clinical trials, and the novel PBD monomer compounds D709119, MMY-SJG and SJG-303. SJG-136, a novel sequence-selective DNA minor groove cross-linking agent, was shown to have potent tumour cell type selective cytotoxicity in in vitro assays. Pharmacokinetic studies in mice via both the i.p. and i.v. route (dosed at the maximum tolerated dose (MTD)) showed that SJG-136 reaches concentrations in plasma well in excess of the in vitro IC50 values for 1 h exposure, and was detected in tumour and brain samples also above the in vitro IC50 values. Furthermore, SJG-136 showed linear pharmacokinetics over a 3-fold drug dose range. Metabolism studies showed SJG-136 is readily metabolised in vitro by hepatic microsomes, predominantly to a monodemethylated metabolite; this metabolite could be detected in vivo. Analytical method development work was also conducted for the imminent Phase I clinical trial of SJG-136 resulting in a sensitive and selective bio-analytical detection protocol. Comet analysis showed that SJG-136 dosed at the MTD and ⅓MTD causes significant interstrand DNA cross-linking in lymphocytes in vivo. In vitro studies demonstrated that SJG-136 localises within the cell nucleus, and acts to disrupt cell division via a G2/M block in the cell cycle at realistic concentrations and exposure times that are achievable in vivo. In vivo pharmacokinetic studies of D709119 showed the compound is easily detectable in mouse plasma following i.p. dosing at the MTD, but could not be detected in either tumour or brain samples. In vitro cytotoxicity studies revealed D709119 to have potent activity across a selection of tumour cell lines. SJG-136, D709119, MMY-SJG, SJG-303 and DC-81 demonstrated a non-enzyme-catalysed reactivity with the biologically relevant thiol, reduced glutathione (GSH). Studies demonstrated that reactivity of the PBD compounds toward GSH was dependent on GSH concentrations. At levels of GSH found in plasma, the PBD compounds showed considerably lower reactivity with GSH than at intracellular GSH levels. SJG-136 and D709119 also showed favourable pharmacokinetic profiles in mice, and warrant further study for anti-tumour activity in vivo and progression to use in patients.
15

Abordagem PK-PD do propofol na revascularização do miocárdio para estudo da influência da circulação extracorpórea na ligação às proteínas plasmáticas e no efeito hipnótico / PK-PD Model to investigate the free propofol plasma levels versus the hypnotic drug effect in patients undergoing coronary artery bypass grafting concerning the influence of CPB-hypothermia on drug plasma binding.

Silva Filho, Carlos Roberto da 16 May 2017 (has links)
Durante a cirurgia de revascularização do miocárdio com circulação extracorpórea e hipotermia (CEC-H) ocorre alteração na efetividade do propofol e na sua farmacocinética realizada a partir das concentrações plasmáticas do propofol total no decurso do tempo. A ligação do propofol à proteína plasmática parece estar alterada em consequência de diversos fatores incluindo a hemodiluição e a heparinização que ocorre no início da circulação extracorpórea, uma vez que se reportou anteriormente que a concentração plasmática do propofol livre aumentou durante a realização da circulação extracorpórea normotérmica. Por outro lado, a infusão alvo controlada é recomendada para manter a concentração plasmática do propofol equivalente ao alvo de 2 &#181g/mL durante a intervenção cirúrgica com CEC-H. Se alterações significativas na hipnose do propofol ocorrem nesses pacientes, então o efeito aumentado desse agente hipnótico poderia estar relacionado à redução na extensão da ligação do fármaco as proteínas plasmáticas; entretanto, o assunto ainda permanece em discussão e necessita de investigações adicionais. Assim, o objetivo do estudo foi investigar as concentrações plasmáticas de propofol livre em pacientes durante a revascularização do miocárdio com e sem o procedimento de CEC-H através da abordagem PK-PD. Dezenove pacientes foram alocados e estratificados para realização de cirurgia de revascularização do miocárdio com circulação extracorpórea (CEC-H, n=10) ou sem circulação extracorpórea (NCEC, n=9). Os pacientes foram anestesiados com sufentanil e propofol alvo de 2 &#181g/mL. Realizou-se coleta seriada de sangue para estudo farmacocinético e o efeito foi monitorado através do índice bispectral (BIS) para medida da profundidade da hipnose no período desde a indução da anestesia até 12 horas após o término da infusão de propofol, em intervalos de tempo pré-determinados no protocolo de estudo. As concentrações plasmáticas foram determinadas através de método bioanalítico pela técnica de cromatografia líquida de alta eficiência. A farmacocinética foi investigada a partir da aplicação do modelo aberto de dois compartimentos, PK Solutions v. 2. A análise PK-PD foi realizada no Graph Pad Prisma v.5.0 após a escolha do modelo do efeito máximo (EMAX sigmóide, slope variável). Os dados foram analisados utilizando o Prisma v. 5.0, p<0,05, significância estatística. As concentrações plasmáticas de propofol total foram comparáveis nos dois grupos (CEC-H e NCEC); entretanto o grupo CEC-H evidenciou aumento na concentração do propofol livre de 2 a 5 vezes em função da redução na ligação do fármaco às proteínas plasmáticas. A farmacocinética do propofol livre mostrou diferença significativa entre os grupos no processo de distribuição pelo prolongamento da meia vida e aumento do volume aparente, e no processo de eliminação em função do aumento na depuração plasmática e redução na meia vida biológica no grupo CEC-H. A escolha do modelo EMAX sigmóide, slope variável foi adequada uma vez que se evidenciou alta correlação entre os valores do índice bispectral e as concentrações plasmáticas do propofol livre (r2>0.90, P<0.001) para os pacientes investigados. / During coronary artery bypass grafting (CABG) surgery with cardiopulmonary bypass (CPB) profound changes occur on propofol effect and on kinetic disposition related to total drug plasma measurements in these patients. It was reported that drug plasma binding could be altered as a consequence of hemodilution and heparinization before starts CPB since free propofol plasma levels was increased by twice under normothermic procedure. In addition, the target controlled infusion (TCI) is recommended to maintain propofol plasma concentration (2 &#181g/mL) during CABG CPB-H intervention. However, whether significant changes that occur in propofol hypnosis in these patients could be related to the reduction on the extension of drug plasma binding remain unclear and under discussion until now. Then, the objective of this study was to investigate propofol free plasma levels in patients undergoing CABG with and without CPB by a pharmacokinetics-pharmacodynamics (PK-PD) approach. Nineteen patients were scheduled for on-pump coronary artery bypass grafting (CABG-CPB, n=10) or off-pump coronary artery bypass grafting (OPCABG, n=9) were anesthetized with sufentanil and propofol TCI (2 &#181g/mL). Blood samples were collected for drug plasma measurements and BIS were applied to access the depth of hypnosis from the induction of anesthesia up to 12 hours after the end of propofol infusion, at predetermined intervals. Plasma drug concentrations were measured using high-performance liquid chromatography, followed by a propofol pharmacokinetic analysis based on two compartment open model, PK Solutions v.2; PK-PD analysis was performed by applying EMAX model, sigmoid shape-variable slope and data were analyzed using Prisma v. 5.0, considering p<0.05 as significant difference between groups. The total propofol plasma concentrations were comparable in both groups during CABG; however it was shown in CPB-group significant increases in propofol free plasma concentration by twice to fivefold occur as a consequence of drug plasma protein binding reduced in these patients. Pharmacokinetics of free propofol in CPB-H group compared to OPCAB group based on two compartment open model was significantly different by the prolongation of distribution half-life, increases on plasma clearance, and biological half-life shortened. In addition, the kinetic disposition of propofol changes in a different manner considering free drug levels in the CPB-H group against OPCAB group as follows: prolongation of distribution half-life and increases on volume of distribution, remaining unchanged biological half-life in spite of plasma clearance increased. BIS values showed a strong correlation with free drug levels (r2>0.90, P<0.001) in CPB-H group and also in OPCAB group by the chosen EMAX model sigmoid shape-variable slope analyzed by GraphPad Prisma v.5.0.
16

Pharmakokinetische und pharmakodynamische Populationsanalyse von Cariporide in der Therapie der koronaren Herz-Erkrankung unter Bypass-Operation

Harnisch, Lutz 20 January 2003 (has links)
Die Beurteilung der Wirkung von Cariporide auf dieEreignis-Wahrscheinlichkeit eines Herzinfarktes oder des Todes imRahmen einer Bypass-Operation ist Gegenstand der Arbeit. DasNHE-Austauschersystem in der Herzmuskelzelle induziert den unterIschämie durch den intrazellulären Protonenüberschusshervorgerufenen Na(+)- und Ca(2+)-Einstrom. Cariporide ist einNHE-Inhibitor, der den unter Ischämie durch die Ca(2+)-Überladunginduzierten Herzmuskelzelltod verzögern soll. In einer kombinierten Phase-II/III-Studie (GUARDIAN, n=11590) war derEinfluss verschiedener intravenöser Dosen von Cariporide auf dieHäufigkeit von Herzinfarkt oder Tod in ACS/NQMI, PTCA undCABG-Patientenkollektiven untersucht worden. Nur die höchstdosierteCABG-Gruppe zeigte eine signifikante Reduktion der Ereignisrate um24,7% (p=0,027) gegenüber Placebo. Diese schwacheDosis-Wirkungs-Beziehung konnte durch eine pharmakokinetische undpharmakodynamische Populationsanalyse in eineKonzentrations-Wirkungs-Beziehung überführt werden. Zur Entwicklungdes Populationsmodells waren verschiedene Submodelle notwendig: 1. Modell für den Zeitverlauf der Ereignisrate: Durch Kombination zweier Weibull-Verteilungen ist es möglich, die beobachteten Daten als Überlebenszeitfunktion nach CABG zu beschreiben. Ein akutes, unmittelbar auf die CABG-Operation zurückzuführendes Risiko wird hier von einem chronischen Risiko unterschieden. 2. Pharmakokinetisches Modell: Ein multiexponentielles populationspharmakokinetisches Modell ist notwendig zur Beschreibung der PK nach iv-Applikation von Cariporide bei Probanden und Patienten. 3. Pharmakodynamisches Modell: Über ein empirisches logistisches Modell wird die Reduktion des akuten Risikos mit der mittleren Cariporide Plasmakonzentration unter der Bypass-Operation verknüpft. In einer Substudie der GUARDIAN-Hauptstudie konnte daspopulationspharmakokinetische Modell aus der früherenPhase-I-Entwicklung mit Probanden für die Patienten validiert werden.Die mit Hilfe der individüllen Dosierung, der demographischen Datenund dem Populationsmodell für die Periode mit dem höchsten Risikowährend der CABG-Operation vorhergesagten mittlerenPlasmakonzentrationen flossen in die Analyse derKonzentrations-Zeit-Abhängigkeit der Ereignis-Wahrscheinlichkeit ein. Eine untere Schwellenkonzentration (0,5mg/l), unterhalb der mitkeinem Effekt zu rechnen ist, wurde bestimmt. Die Daten erlaubten dieSchätzung des maximalen Effekts nur unzureichend. Die maximaleRisikoreduktion von 60% wurde mit einem Konfidenzintervall von29% bis 100% geschätzt. Unter Einsatz einer linearen Näherungdes Hill-Modells wurde eine obere Schwellenkonzentration bei 0,9mg/lbestimmt. Nur 37% aller Patienten der 80mg-Dosisgruppe erreichtenmittlere Konzentrationen oberhalb der unteren Schwellenkonzentration,in der 120mg-Dosisgruppe waren es immerhin schon 75% allerPatienten. Die Infusion von 120mg Cariporide über eine Stunde gefolgt voneiner Erhaltungsdosis von 20mg/h für weitere 47 Stunden sollte bei95% der Patienten während der CABG-Operation zu mittlerenKonzentrationen über der minimal effektiven Konzentration von0,5mg/l führen. Eine auf diese Weise mittels Simulationenoptimierte Dosierungsregel sollte während der CABG-Operation zu einemerhöhten Schutz der Patienten gegen die Folgen ischämischerEreignisse führen. Eine weitere Erhöhung der Erhaltungsdosis aufbis zu 40mg/h mit einer entsprechenden Anpassung der Initialdosissollte 95% der Patienten sogar über die bisher nur unsicher zubestimmende obere Grenzkonzentration von 0,9mg/l bringen. Solltenkeine dosislimitierenden Nebenwirkungen auftreten, kann dieseErhöhung sowohl der Initialdosis als auch der Erhaltungsdosis zueiner weiteren Verbesserung während der Risikoperiode führen undeinen weiteren potentiellen klinischen Vorteil für Cariporideerbringen. / Subject of this analysis is the assessment of the effect of cariporideon the event probability of a myocardial infarction (MI) or death inthe scope of a coronary artery bypass graft. Thesodium-hydrogen-exchange system (NHE) in the myocardial cell inducesthe sodium and calcium influx caused by an ischaemia induced hydrogenoverload. Cariporide is a NHE-inhibitor which is seen to be delayingthe necrosis of myocardial cells caused by the ischaemia inducedcalcium influx. The influence of different intravenous doses of cariporide on thefrequency of MI and death in ACS/NQMI, PTCA, and CABG patients hadbeen investigated in a combined phase II/III trial (GUARDIAN,n=11590). Only the highest dosed CABG-subgroup showed a significantreduction of the event-rate compared to placebo of 24.7% (p=0.027).This weak dose-effect-relationship could be translated into aconcentration-effect relationship by using a populationpharmacokinetic/pharmacodynamic (PK/PD) analysis. To develop thispopulation model a series of sub-models were established: 1) Model for the time-to-event progression: using a combination of two Weibull-distributions, it was possible to describe the observed data following the CABG procedure by means of a survival-function. An acute risk, likely to be related to the CABG-procedure could be discriminated from a chronic risk. 2) Pharmacokinetic model: a multi-exponential population PK model was necessary to describe the PK after iv-application of cariporide in volunteers as well patients. 3) Pharmacodynamic model: using an empirical logistic model the reduction of the acute risk was linked to the cariporide plasma-concentrations. In a sub-study of the GUARDIAN-main study, the population PK model ofthe phase I development in volunteers had been be validated. Usingthe individual dosing, the individual demographic information and thepopulation PK model mean concentrations were calculated for the periodof the highest risk during the CABG procedure. Those concentrationswere then introduced into the analysis of the concentration timedependency of the event probability. A lower threshold concentration (0.5mg/l) was estimated beneath thatno effect would be expected. The data permitted the estimation of themaximum effect only insufficiently. A maximum risk reduction of 60%was estimated with a confidence interval from 29% to 100%. Using thelinear approximation of the Hill-model an upper thresholdconcentration of 0.9mg/l could be determined. Mean concentrationsunder risk were reached above the lower threshold concentration inonly 37% of all patients in the 80mg dose group, whereas in the 120mgdose-group already 75% of the patients exceeded the lower thresholdconcentration. The infusion of 120mg cariporide for an hour followed by a maintenancedose of 20mg/h for further 47 hours should maintain in 95% of thepatients during the CABG-procedure mean concentrations above theminimal effective concentration of 0.5mg/l. A dose regimen optimisedin this sense by means of simulations should lead to an increasedprotection against ischemic events during and after theCABG-operation. A further increase of the maintenance dose up to40mg/h with a corresponding adaptation of the initial dose shouldshift at least 95% of the patients above the so far impreciseestimated upper threshold concentration of 0.9mg. If no dose limitingside-effects occur, this increase of both the initial dose and themaintenance dose may lead to a further improvement during the riskperiod and may result in a further potential clinical advantage forcariporide.
17

Abordagem PK-PD do propofol na revascularização do miocárdio para estudo da influência da circulação extracorpórea na ligação às proteínas plasmáticas e no efeito hipnótico / PK-PD Model to investigate the free propofol plasma levels versus the hypnotic drug effect in patients undergoing coronary artery bypass grafting concerning the influence of CPB-hypothermia on drug plasma binding.

Carlos Roberto da Silva Filho 16 May 2017 (has links)
Durante a cirurgia de revascularização do miocárdio com circulação extracorpórea e hipotermia (CEC-H) ocorre alteração na efetividade do propofol e na sua farmacocinética realizada a partir das concentrações plasmáticas do propofol total no decurso do tempo. A ligação do propofol à proteína plasmática parece estar alterada em consequência de diversos fatores incluindo a hemodiluição e a heparinização que ocorre no início da circulação extracorpórea, uma vez que se reportou anteriormente que a concentração plasmática do propofol livre aumentou durante a realização da circulação extracorpórea normotérmica. Por outro lado, a infusão alvo controlada é recomendada para manter a concentração plasmática do propofol equivalente ao alvo de 2 &#181g/mL durante a intervenção cirúrgica com CEC-H. Se alterações significativas na hipnose do propofol ocorrem nesses pacientes, então o efeito aumentado desse agente hipnótico poderia estar relacionado à redução na extensão da ligação do fármaco as proteínas plasmáticas; entretanto, o assunto ainda permanece em discussão e necessita de investigações adicionais. Assim, o objetivo do estudo foi investigar as concentrações plasmáticas de propofol livre em pacientes durante a revascularização do miocárdio com e sem o procedimento de CEC-H através da abordagem PK-PD. Dezenove pacientes foram alocados e estratificados para realização de cirurgia de revascularização do miocárdio com circulação extracorpórea (CEC-H, n=10) ou sem circulação extracorpórea (NCEC, n=9). Os pacientes foram anestesiados com sufentanil e propofol alvo de 2 &#181g/mL. Realizou-se coleta seriada de sangue para estudo farmacocinético e o efeito foi monitorado através do índice bispectral (BIS) para medida da profundidade da hipnose no período desde a indução da anestesia até 12 horas após o término da infusão de propofol, em intervalos de tempo pré-determinados no protocolo de estudo. As concentrações plasmáticas foram determinadas através de método bioanalítico pela técnica de cromatografia líquida de alta eficiência. A farmacocinética foi investigada a partir da aplicação do modelo aberto de dois compartimentos, PK Solutions v. 2. A análise PK-PD foi realizada no Graph Pad Prisma v.5.0 após a escolha do modelo do efeito máximo (EMAX sigmóide, slope variável). Os dados foram analisados utilizando o Prisma v. 5.0, p<0,05, significância estatística. As concentrações plasmáticas de propofol total foram comparáveis nos dois grupos (CEC-H e NCEC); entretanto o grupo CEC-H evidenciou aumento na concentração do propofol livre de 2 a 5 vezes em função da redução na ligação do fármaco às proteínas plasmáticas. A farmacocinética do propofol livre mostrou diferença significativa entre os grupos no processo de distribuição pelo prolongamento da meia vida e aumento do volume aparente, e no processo de eliminação em função do aumento na depuração plasmática e redução na meia vida biológica no grupo CEC-H. A escolha do modelo EMAX sigmóide, slope variável foi adequada uma vez que se evidenciou alta correlação entre os valores do índice bispectral e as concentrações plasmáticas do propofol livre (r2>0.90, P<0.001) para os pacientes investigados. / During coronary artery bypass grafting (CABG) surgery with cardiopulmonary bypass (CPB) profound changes occur on propofol effect and on kinetic disposition related to total drug plasma measurements in these patients. It was reported that drug plasma binding could be altered as a consequence of hemodilution and heparinization before starts CPB since free propofol plasma levels was increased by twice under normothermic procedure. In addition, the target controlled infusion (TCI) is recommended to maintain propofol plasma concentration (2 &#181g/mL) during CABG CPB-H intervention. However, whether significant changes that occur in propofol hypnosis in these patients could be related to the reduction on the extension of drug plasma binding remain unclear and under discussion until now. Then, the objective of this study was to investigate propofol free plasma levels in patients undergoing CABG with and without CPB by a pharmacokinetics-pharmacodynamics (PK-PD) approach. Nineteen patients were scheduled for on-pump coronary artery bypass grafting (CABG-CPB, n=10) or off-pump coronary artery bypass grafting (OPCABG, n=9) were anesthetized with sufentanil and propofol TCI (2 &#181g/mL). Blood samples were collected for drug plasma measurements and BIS were applied to access the depth of hypnosis from the induction of anesthesia up to 12 hours after the end of propofol infusion, at predetermined intervals. Plasma drug concentrations were measured using high-performance liquid chromatography, followed by a propofol pharmacokinetic analysis based on two compartment open model, PK Solutions v.2; PK-PD analysis was performed by applying EMAX model, sigmoid shape-variable slope and data were analyzed using Prisma v. 5.0, considering p<0.05 as significant difference between groups. The total propofol plasma concentrations were comparable in both groups during CABG; however it was shown in CPB-group significant increases in propofol free plasma concentration by twice to fivefold occur as a consequence of drug plasma protein binding reduced in these patients. Pharmacokinetics of free propofol in CPB-H group compared to OPCAB group based on two compartment open model was significantly different by the prolongation of distribution half-life, increases on plasma clearance, and biological half-life shortened. In addition, the kinetic disposition of propofol changes in a different manner considering free drug levels in the CPB-H group against OPCAB group as follows: prolongation of distribution half-life and increases on volume of distribution, remaining unchanged biological half-life in spite of plasma clearance increased. BIS values showed a strong correlation with free drug levels (r2>0.90, P<0.001) in CPB-H group and also in OPCAB group by the chosen EMAX model sigmoid shape-variable slope analyzed by GraphPad Prisma v.5.0.

Page generated in 0.0967 seconds