• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 107
  • 23
  • 19
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 100
  • 95
  • 71
  • 65
  • 50
  • 48
  • 46
  • 40
  • 39
  • 38
  • 38
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Electron Transport in Chalcogenide Nanostructures

Nilwala Gamaralalage Premasiri, Kasun Viraj Madusanka 28 January 2020 (has links)
No description available.
282

Magnetic-Field-Driven Quantum Phase Transitions of the Kitaev Honeycomb Model

Ronquillo, David Carlos 11 September 2020 (has links)
No description available.
283

Phase Transitions and Associated Magnetic and Transport Properties in Selected NI-MN-GA based Heusler Alloys

Agbo, Sunday A. 27 July 2020 (has links)
No description available.
284

Aspects of Quantum Fluctuations under Time-dependent External Influences

Uhlmann, Michael 01 October 2007 (has links)
The vacuum of quantum field theory is not empty space but filled with quantum vacuum fluctuations, which give rise to many intriguing effects. The first part of this Thesis addresses cosmic inflation, where the quantum fluctuations of the inflaton field freeze and get amplified in the expanding universe. Afterwards, we turn our attention towards Bose-Einstein condensates, a laboratory system. Since most of our calculations are performed using a mean-field expansion, we will study the accuracy of a finite-range interaction potential onto such an expansion. Exploiting the universality of quantum fluctuations, several aspects of cosmic inflation will be identified in ballistically expanding Bose-Einstein condensates. The effective action technique for calculating the quantum backreaction will be scrutinized. Finally, we consider dynamic quantum phase transitions in the last part of this Thesis. To this end two specific scenarios will be investigated: firstly, the structure formation during the superfluid to Mott-insulator transition in the Bose-Hubbard model; and secondly, the formation of spin domains as a two-dimensional spin-one Bose gas is quenched from the (polar) paramagnetic to the (planar) ferromagnetic phase. During this quench, the symmetry of the ground state is spontaneously broken and vortices (topological defects) form.
285

Phase transitions and vortex structures in multicomponent superconductors

Sellin, Karl January 2015 (has links)
Theoretical aspects of multicomponent superconductivity and systemswith competing interactions are studied using Monte Carlo techniques.Motivated by recent experimental and theoretical results of complex struc-ture formation of vortices in multicomponent systems, possible vortex struc-ture formations due to vortex interactions that are not purely attractive orrepulsive are considered. Vortex structures such as clusters, superclusters,hierarchical structure formation, stripes, gossamer patters, glassy phases, aswell as checkerboard lattices and loops are demonstrated to be possible.The order of the superconducting phase transition is considered for multi-component lattice London superconductors. The phase transition is demon-strated to be either rst-order or continuous depending on the strength of asymmetry-breaking Josephson intercomponent interaction. It is argued thatthe rst-order phase transition is caused by a vortex phase separation due toa uctuation-induced attractive interaction between vortex lines. / <p>QC 20151117</p>
286

Data driven approach to detection of quantum phase transitions

Contessi, Daniele 19 July 2023 (has links)
Phase transitions are fundamental phenomena in (quantum) many-body systems. They are associated with changes in the macroscopic physical properties of the system in response to the alteration in the conditions controlled by one or more parameters, like temperature or coupling constants. Quantum phase transitions are particularly intriguing as they reveal new insights into the fundamental nature of matter and the laws of physics. The study of phase transitions in such systems is crucial in aiding our understanding of how materials behave in extreme conditions, which are difficult to replicate in laboratory, and also the behavior of exotic states of matter with unique and potentially useful properties like superconductors and superfluids. Moreover, this understanding has other practical applications and can lead to the development of new materials with specific properties or more efficient technologies, such as quantum computers. Hence, detecting the transition point from one phase of matter to another and constructing the corresponding phase diagram is of great importance for examining many-body systems and predicting their response to external perturbations. Traditionally, phase transitions have been identified either through analytical methods like mean field theory or numerical simulations. The pinpointing of the critical value normally involves the measure of specific quantities such as local observables, correlation functions, energy gaps, etc. reflecting the changes in the physics through the transition. However, the latter approach requires prior knowledge of the system to calculate the order parameter of the transition, which is uniquely associated to its universality class. Recently, another method has gained more and more attention in the physics community. By using raw and very general representative data of the system, one can resort to machine learning techniques to distinguish among patterns within the data belonging to different phases. The relevance of these techniques is rooted in the ability of a properly trained machine to efficiently process complex data for the sake of pursuing classification tasks, pattern recognition, generating brand new data and even developing decision processes. The aim of this thesis is to explore phase transitions from this new and promising data-centric perspective. On the one hand, our work is focused on the developement of new machine learning architectures using state-of-the-art and interpretable models. On the other hand, we are interested in the study of the various possible data which can be fed to the artificial intelligence model for the mapping of a quantum many-body system phase diagram. Our analysis is supported by numerical examples obtained via matrix-product-states (MPS) simulations for several one-dimensional zero-temperature systems on a lattice such as the XXZ model, the Extended Bose-Hubbard model (EBH) and the two-species Bose Hubbard model (BH2S). In Part I, we provide a general introduction to the background concepts for the understanding of the physics and the numerical methods used for the simulations and the analysis with deep learning. In Part II, we first present the models of the quantum many-body systems that we study. Then, we discuss the machine learning protocol to identify phase transitions, namely anomaly detection technique, that involves the training of a model on a dataset of normal behavior and use it to recognize deviations from this behavior on test data. The latter can be applied for our purpose by training in a known phase so that, at test-time, all the other phases of the system are marked as anomalies. Our method is based on Generative Adversarial Networks (GANs) and improves the networks adopted by the previous works in the literature for the anomaly detection scheme taking advantage of the adversarial training procedure. Specifically, we train the GAN on a dataset composed of bipartite entanglement spectra (ES) obtained from Tensor Network simulations for the three aforementioned quantum systems. We focus our study on the detection of the elusive Berezinskii-Kosterlitz-Thouless (BKT) transition that have been object of intense theoretical and experimental studies since its first prediction for the classical two-dimensional XY model. The absence of an explicit symmetry breaking and its gappless-to-gapped nature which characterize such a transition make the latter very subtle to be detected, hence providing a challenging testing ground for the machine-driven method. We train the GAN architecture on the ES data in the gapless side of BKT transition and we show that the GAN is able to automatically distinguish between data from the same phase and beyond the BKT. The protocol that we develop is not supposed to become a substitute to the traditional methods for the phase transitions detection but allows to obtain a qualitative map of a phase diagram with almost no prior knowledge about the nature and the arrangement of the phases -- in this sense we refer to it as agnostic -- in an automatic fashion. Furthermore, it is very general and it can be applied in principle to all kind of representative data of the system coming both from experiments and numerics, as long as they have different patterns (even hidden to the eye) in different phases. Since the kind of data is crucially linked with the success of the detection, together with the ES we investigate another candidate: the probability density function (PDF) of a globally U(1) conserved charge in an extensive sub-portion of the system. The full PDF is one of the possible reductions of the ES which is known to exhibit relations and degeneracies reflecting very peculiar aspects of the physics and the symmetries of the system. Its patterns are often used to tell different kinds of phases apart and embed information about non-local quantum correlations. However, the PDF is measurable, e.g. in quantum gas microscopes experiments, and it is quite general so that it can be considered not only in the cases of the study but also in other systems with different symmetries and dimensionalities. Both the ES and the PDF can be extracted from the simulation of the ground state by dividing the one-dimensional chain into two complementary subportions. For the EBH we calculate the PDF of the bosonic occupation number in a wide range of values of the couplings and we are able to reproduce the very rich phase diagram containing several phases (superfluid, Mott insulator, charge density wave, phase separation of supersolid and superfluid and the topological Haldane insulator) just with an educated gaussian fit of the PDF. Even without resorting to machine learning, this analysis is instrumental to show the importance of the experimentally accessible PDF for the task. Moreover, we highlight some of its properties according to the gapless and gapped nature of the ground state which require a further investigation and extension beyond zero-temperature regimes and one-dimensional systems. The last chapter of the results contains the description of another architecture, namely the Concrete Autoencoder (CAE) which can be used for detecting phase transitions with the anomaly detection scheme while being able to automatically learn what the most relevant components of the input data are. We show that the CAE can recognize the important eigenvalues out of the entire ES for the EBH model in order to characterize the gapless phase. Therefore the latter architecture can be used to provide not only a more compact version of the input data (dimensionality reduction) -- which can improve the training -- but also some meaningful insights in the spirit of machine learning interpretability. In conclusion, in this thesis we describe two advances in the solution to the problem of phase recognition in quantum many-body systems. On one side, we improve the literature standard anomaly detection protocol for an automatic and agnostic identification of the phases by employing the GAN network. Moreover, we implement and test an explainable model which can make the interpretation of the results easier. On the other side we put the focus on the PDF as a new candidate quantity for the scope of discerning phases of matter. We show that it contains a lot of information about the many-body state being very general and experimentally accessible.
287

Quantum Systems and their Classical Limit A C*- Algebraic Approach

Van De Ven, Christiaan Jozef Farielda 14 December 2021 (has links)
In this thesis we develop a mathematically rigorous framework of the so-called ''classical limit'' of quantum systems and their semi-classical properties. Our methods are based on the theory of strict, also called C*- algebraic deformation quantization. Since this C*-algebraic approach encapsulates both quantum as classical theory in one single framework, it provides, in particular, an excellent setting for studying natural emergent phenomena like spontaneous symmetry breaking (SSB) and phase transitions typically showing up in the classical limit of quantum theories. To this end, several techniques from functional analysis and operator algebras have been exploited and specialised to the context of Schrödinger operators and quantum spin systems. Their semi-classical properties including the possible occurrence of SSB have been investigated and illustrated with various physical models. Furthermore, it has been shown that the application of perturbation theory sheds new light on symmetry breaking in Nature, i.e. in real, hence finite materials. A large number of physically relevant results have been obtained and presented by means of diverse research papers.
288

Complexity near critical points

Uday Sood (16993635) 15 September 2023 (has links)
<p dir="ltr">Complexity has played an increasingly important role in recent years. In this dissertation, we study some notions of complexity in systems that exhibit critical behaviour. Our results show that complexity as it is generally understood in holographic and lattice models of criticality can have several ambiguities. But despite these ambiguities, there are some features that are universally true. On the phase diagram of the system, it is the critical point which has the most complex ground state. States of physical systems with a large complexity tend to be hard to simulate using quantum circuits. Near the critical point, there is a part of complexity which is non-analytic and scales universally, i.e, the scaling is independent of the microscopic details of the Hamiltonian but depends only on the dimensionality of the system, and of the deforming operator. The coefficient of this term is unambiguous, i.e, it is not affected by the various changes in the definition of complexity which plague all the analytic terms near the critical point. We show this in lattice, field-theoretic and holographic calculations. These results were first presented in our earlier studies.</p>
289

Synthesis and Characterization of A<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub> Materials

Young, Lindsay Kay January 2015 (has links)
No description available.
290

Applications of nonequilibrium statistical physics to ecological systems

Guttal, Vishwesha 24 June 2008 (has links)
No description available.

Page generated in 0.0961 seconds