• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Buoyancy-thermocapillary convection of volatile fluids in confined and sealed geometries

Qin, Tongran 27 May 2016 (has links)
Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and buoyancy is a classic problem of fluid mechanics. It has attracted increasing attentions recently due to its relevance for two-phase cooling. Many of the modern thermal management technologies exploit the large latent heats associated with phase change at the interface of volatile liquids, allowing compact devices to handle very high heat fluxes. To enhance phase change, such cooling devices usually employ a sealed cavity from which almost all noncondensable gases, such as air, have been evacuated. Heating one end of the cavity, and cooling the other, establishes a horizontal temperature gradient that drives the flow of the coolant. Although such flows have been studied extensively at atmospheric conditions, our fundamental understanding of the heat and mass transport for volatile fluids at reduced pressures remains limited. A comprehensive and quantitative numerical model of two-phase buoyancy-thermocapillary convection of confined volatile fluids subject to a horizontal temperature gradient has been developed, implemented, and validated against experiments as a part of this thesis research. Unlike previous simplified models used in the field, this new model incorporates a complete description of the momentum, mass, and heat transport in both the liquid and the gas phase, as well as phase change across the entire liquid-gas interface. Numerical simulations were used to improve our fundamental understanding of the importance of various physical effects (buoyancy, thermocapillary stresses, wetting properties of the liquid, etc.) on confined two-phase flows. In particular, the effect of noncondensables (air) was investigated by varying their average concentration from that corresponding to ambient conditions to zero, in which case the gas phase becomes a pure vapor. It was found that the composition of the gas phase has a crucial impact on heat and mass transport as well as on the flow stability. A simplified theoretical description of the flow and its stability was developed and used to explain many features of the numerical solutions and experimental observations that were not well understood previously. In particular, an analytical solution for the base return flow in the liquid layer was extended to the gas phase, justifying the previous ad-hoc assumption of the linear interfacial temperature profile. Linear stability analysis of this two-layer solution was also performed. It was found that as the concentration of noncondensables decreases, the instability responsible for the emergence of a convective pattern is delayed, which is mainly due to the enhancement of phase change. Finally, a simplified transport model was developed for heat pipes with wicks or microchannels that gives a closed-form analytical prediction for the heat transfer coefficient and the optimal size of the pores of the wick (or the width of the microchannels).
2

Laser-based hybrid process for machining hardened steels

Raghavan, Satyanarayanan 13 February 2012 (has links)
Cost-effective machining of hardened steel (>60 HRC) components such as a large wind turbine bearing poses a significant challenge. This thesis investigates a new laser tempering based hybrid turning approach to machine hardened AISI 52100 steel parts more efficiently and cost effectively. The approach consists of a two step process involving laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates using lower cost ceramic tooling to efficiently cut the laser tempered material. The specific objectives of this work are to: (a) study the characteristics of laser tempering of hyper-eutectoid 52100 hardened steel, (b) model the laser tempering process to determine the resulting hardness, and (c) conduct machining experiments to evaluate the performance of the laser tempering based hybrid turning process in terms of forces, tools wear and surface finish. First, the microstructure alterations and phase content in the surface and subsurface layers are analyzed using metallography and x-ray diffraction (XRD) respectively. Laser tempering produces distinct regions consisting of - a tempered white layer and a dark layer- in the heat affected subsurface region of the workpiece. The depth of the tempered region is dependent on the laser scanning conditions. Larger overlap of laser scans and smaller scan speeds produce a thicker tempered region. Furthermore, the tempered region is composed of ferrite and martensite and weak traces of retained austenite (~ 1 %). Second, a laser tempering model consisting of a three dimensional analytical model to predict the temperature field generated by laser scanning of 52100 hardened steel and a phase change based hardness model to predict the hardness of the tempered region are developed. The thermal model is used to evaluate the temperature field induced in the subsurface region due to the thermal cycles produced by the laser scanning step. The computed temperature histories are then fed to the phase change model to predict the surface and subsurface hardness. The laser tempering model is used to select the laser scanning conditions that yield the desired hardness reduction at the maximum depth. This model is verified through laser scanning experiments wherein the hardness changes are compared with model predictions. The model is shown to yield predictions that are within 20 % of the measured hardness of the tempered region. Using the laser scanning parameters determined from the laser tempering model, cutting experiments using Cubic Boron Nitride (CBN) tools and low cost alumina ceramic tools are conducted to compare the performance of laser tempering based hybrid turning with the conventional hard turning process. The machining experiments demonstrate the possibility of higher material removal rates, lower cutting forces, improved tool wear behavior, and consequently improved tool life in the laser tempering based process. In addition, the laser tempered based hybrid turning process produce is shown to yield lower peak-to-valley surface roughness height than the conventional hard turning process. Furthermore, it is found that lower cost ceramic tools can be used in place of CBN tools without compromising the material removal rate.

Page generated in 0.0625 seconds