Spelling suggestions: "subject:"noncondensable gas"" "subject:"noncondensables gas""
1 |
An Experimental Study on the Dynamics of a Single Droplet Vapor ExplosionConcilio Hansson, Roberta January 2010 (has links)
The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident involving interactions of high-temperature corium melt and volatile coolant. Over the past several decades, a large body of literature has been accumulated on vapor explosion phenomenology and methods for assessment of the related risk. Vapor explosion is driven by a rapid fragmentation of high temperaturemelt droplets, leading to a substantial increase of heattransfer areas and subsequent explosive evaporation of the volatile coolant. Constrained by the liquid-phase coolant, the rapid vapor production in the interaction zone causes pressurization and dynamic loading on surrounding structures. While such a general understanding has been established, the triggering mechanism and subsequent dynamic fine fragmentation have yet not been clearly understood. A few mechanistic fragmentation models have been proposed, however, computational efforts to simulate the phenomena generated a large scatter of results. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) are investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics), and their microscale interactions, i.e. the triggering phenomenology. The images point to coolant entrainment into the droplet surface as the mechanism for direct contact/mixing ultimately responsible for energetic interactions. Most importantly, the MISTEE data reveals an inverse correlation between the coolant temperature and the molten droplet deformation/prefragmentation during the first bubble dynamics cycle. The SHARP observations followed by further analysis leads to a hypothesis about a novel phenomenon called pre-conditioning, according to which dynamics of the first bubble-dynamics cycle and the ability of the melt drop to deform/pre-fragment dictate the subsequent explosivity of the so-triggered droplet. The effect of non-condensable gases on the perceived mechanisms was investigated on the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning and interaction energetics. Analysis showed twomain aspects when compared to the MISTEE test series (withoutentrapped air). First, the investigation showed that the meltpreconditioning still strongly depends on the coolant subcooling. Second,in respect to the energetics, the tests consistently showed a reducedconversion ratio compared to that of the MISTEE test series. The effect of the melt material in the steam explosion triggerability was also summoned, since it would in principle directly implicate the melt preconditioning. Since a number of the thermo-physical properties of the material would influence the triggering process, we focused on the material properties by using the same dioxide material with difference concentrations, i.e. eutectic and non-eutectic. Unfortunately, due to the high melt superheat the possible differences were not perceived. Thus, inaddition to other materials, lower melt superheat tests were schedule inthe future. / QC 20101110
|
2 |
Efficiency of a direct contact condenser in the presence of the noncondensable gas air compared to a tube and shell condenserLebsack, Jonathan M. 20 March 2012 (has links)
Steam distillation is the traditional method used for the extraction of peppermint oil. This process is able to remove approximately 20% of the oils from the leaves of the plant. It is a very costly and un-sustainable process due to the release of carbon emissions. Solvent free microwave extraction promises yields of up to 65% of the "available" oils from the peppermint at 3% less cost (Velasco 2007). It can also reduce carbon emissions because it will be using electricity as a power source instead of fossil fuels, however not all electric companies use renewable energies. In 2009 a SFME pilot plant was assembled in North Carolina to test the efficiency of the microwave process on a larger than lab scale. Results from the experiments showed that the tube and shell condenser was unable to effectively condense the mint oil. The problem was determined to be the addition of air to the mixture due to the open ends of the microwave. However it was discovered that the spray scrubber after the condenser was able to collect a visible amount of oil. This inspired the design of a
direct contact condenser (Pommerenck 2012). The direct contact condenser they designed, built, and tested showed vast improvements in steam capturing efficiency when compared to a tube and shell condenser. However due to the materials used for its construction it could not sustain operating temperatures seen in the microwave pilot plant. Using their design a new direct contact condenser was built using materials that would be able to withstand heavy temperatures. The condenser was constructed out of aluminum and contained stainless steel spray nozzles, both for their non-corrosive properties. Tests were conducted using 8 and 16 nozzles and tested over a range of 20-100% steam by mass. Additional tests were completed using the full 24 nozzles but due to the location of some of the nozzles coolant was lost as an aerosol with no way to quantify the loss. Comparing the data to research completed by Pommerenck et al. on efficiency of a tube and shell condenser used for the mint distillation process found that with increasing amounts of air there is a greater loss of heat transfer. This is believed to be the effects of a boundary layer of the noncondensable fluid, air, which forms along the tube and resists condensation from forming (Seunguim 2006). Pommerenck's tube and shell condenser used a coolant flow rate of 24 L/min while the flow rates tested in this research were 18 L/min and 36 L/min. The direct contact condenser showed a considerable increase in performance even with the smaller flow rate compared to the tube and shell unit, indicating removal of the boundary layer. The efficiency tends to follow the maximum theoretical efficiency while the tube and shell condenser lowers in efficiency. The overall goal of this project is to determine the feasibility of the use of a direct contact condenser for implementation in the solvent free microwave extraction of peppermint oil when air is present. / Graduation date: 2012
|
3 |
Buoyancy-thermocapillary convection of volatile fluids in confined and sealed geometriesQin, Tongran 27 May 2016 (has links)
Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and buoyancy is a classic problem of fluid mechanics. It has attracted increasing attentions recently due to its relevance for two-phase cooling. Many of the modern thermal management technologies exploit the large latent heats associated with phase change at the interface of volatile liquids, allowing compact devices to handle very high heat fluxes. To enhance phase change, such cooling devices usually employ a sealed cavity from which almost all noncondensable gases, such as air, have been evacuated. Heating one end of the cavity, and cooling the other, establishes a horizontal temperature gradient that drives the flow of the coolant. Although such flows have been studied extensively at atmospheric conditions, our fundamental understanding of the heat and mass transport for volatile fluids at reduced pressures remains limited. A comprehensive and quantitative numerical model of two-phase buoyancy-thermocapillary convection of confined volatile fluids subject to a horizontal temperature gradient has been developed, implemented, and validated against experiments as a part of this thesis research. Unlike previous simplified models used in the field, this new model incorporates a complete description of the momentum, mass, and heat transport in both the liquid and the gas phase, as well as phase change across the entire liquid-gas interface. Numerical simulations were used to improve our fundamental understanding of the importance of various physical effects (buoyancy, thermocapillary stresses, wetting properties of the liquid, etc.) on confined two-phase flows. In particular, the effect of noncondensables (air) was investigated by varying their average concentration from that corresponding to ambient conditions to zero, in which case the gas phase becomes a pure vapor. It was found that the composition of the gas phase has a crucial impact on heat and mass transport as well as on the flow stability. A simplified theoretical description of the flow and its stability was developed and used to explain many features of the numerical solutions and experimental observations that were not well understood previously. In particular, an analytical solution for the base return flow in the liquid layer was extended to the gas phase, justifying the previous ad-hoc assumption of the linear interfacial temperature profile. Linear stability analysis of this two-layer solution was also performed. It was found that as the concentration of noncondensables decreases, the instability responsible for the emergence of a convective pattern is delayed, which is mainly due to the enhancement of phase change. Finally, a simplified transport model was developed for heat pipes with wicks or microchannels that gives a closed-form analytical prediction for the heat transfer coefficient and the optimal size of the pores of the wick (or the width of the microchannels).
|
Page generated in 0.0574 seconds