• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Voltage Source Converters with Energy Storage Capability

Xie, Hailian January 2006 (has links)
<p>This project deals with voltage source converters with energy storage capability. The main objective is to study the possible benefits of energy storage to a power system with a VSC as the interface between them.</p><p>First of all, a converter control system is proposed for a two level VSC. In the conventional converter control, the control system usually takes the voltage measured at the point where the converter is connected and calculates the reference voltage for the converter; with a modulation system the converter then produces the required 'average voltage'. In this project, a novel flux modulation scheme, combined with the deadbeat current control strategy, is proposed. The current controller is capable of controlling both positive and negative sequence current components. With flux modulation, the control system measures the bus flux and commands the converter to generate the required flux.</p><p>Based on the proposed control strategies, several application studies have been carried out.</p><p>The first application study investigates the effect of energy storage on the power quality at the point of common coupling when a system is subject to load disturbances. The voltage at PCC in a weak network is very sensitive to load changes. A sudden change in active load will cause both a phase jump and a magnitude fluctuation in the bus voltage, whereas reactive load changes mainly affect the voltage magnitude. With the addition of energy storage to a StatCom, it is possible to compensate for the active power change as well as providing reactive power support. In this thesis, some effective active power compensation schemes are proposed. Simulations and experiments have been performed to verify the compensation schemes. The results show that a StatCom with energy storage can significantly reduce phase jumps and magnitude deviations of the bus voltage.</p><p>pact of the energy storage on the performance of weak systems under fault conditions has been investigated. The investigation was done by studying an example system. The system model was established based on a real system, in which some induction motors driving pumps along a pipeline are fed from a radial transmission line. Studies show that for a weak system with induction motor loads, a StatCom with certain energy storage capacity will effectively improve the system recovery after faults. Although this incurs extra cost for the increasing dc voltage rating and size of the dc side capacitor, the overall rating of the converter can be reduced by utilization of the proposed active power compensation scheme.</p><p>The last case study investigates the possible use of a StatCom with energy storage to improve the power quality at the point of common coupling where a cyclic load is connected. Studies show that by providing both fast reactive and fast active power support to the network, not only the voltage magnitude can be well controlled, but also the voltage phase jump can be reduced significantly.</p>
2

On Power-system Benefits, Main-circuit Design, and Control of StatComs with Energy Storage

Xie, Hailian January 2009 (has links)
Static synchronous compensation (StatCom) is an application that utilizes a voltage source converter (VSC) to provide instantaneous reactive power support to the connected power system. Conventionally, StatComs are employed for reactive power support only. However, with the integration of energy storage (ES) into a StatCom, it can provide active power support in addition to the reactive power support. This thesis deals with the integration of ES into StatComs. The investigation involves the following aspects: possible benefits for power systems, main circuit design, and control strategies. As the basis of the investigation, a control scheme is proposed for two-level VSCs. It is a novel flux modulation scheme combined with the well-known deadbeat current control. The current controller is capable of controlling the positive sequence, the negative sequence, and the offset components of the converter current. With flux modulation, all the three above-mentioned components of the bus flux are controllable. This differs from the conventional voltage modulation scheme, in which only the positive and negative sequence components of the bus voltage are controllable. The difference between the proposed flux modulation scheme and the voltage modulation scheme is investigated regarding saturation of transformers in the connected system during fault recovery. The investigation shows that by controlling the offset component of the bus flux, the transformer saturation problem can be mitigated to a certain extent. The possible benefits of the additional active power support of StatComs are investigated through several case studies. Different active power compensation schemes are proposed. First, active power compensation for sudden load changes in weak systems is investigated. The proposed control strategies are verified through computer simulations and through experiments in a real-time simulator. It is shown that with active power compensation, both the phase jumps and magnitude variations in the voltage at the PCC can be reduced significantly. Secondly, the power compensation of cyclic loads is investigated. The results show that the power quality at the connection point can be improved regarding both phase jumps and magnitude variations. In the third case study, the fault-recovery performance of an example system is investigated, showing that improved performance can be achieved by the additional active power support. ES devices such as capacitors, supercapacitors, and batteries exhibit considerable variation in the terminal voltage during a charging/discharging cycle. A direct connection of ES devices to the dc side of a VSC requires a higher voltage rating of the VSC. Thus, the cost of the VSC has to be increased. In this thesis, a dual thyristor converter topology is proposed to interface ES devices with the dc side of the VSC. First, a cost comparison is performed to compare the total cost of the whole system with and without the proposed interface topology. A cost comparison between various types of ES is also presented, providing a guideline for the choice of ES at energy levels where several alternatives exist. Then, the dynamics of systems with the proposed interface topology are investigated. Control strategies are proposed and verified by computer simulations. Two different control methods for the dual-thyristor converter are compared. / QC 20100819
3

Voltage Source Converters with Energy Storage Capability

Xie, Hailian January 2006 (has links)
This project deals with voltage source converters with energy storage capability. The main objective is to study the possible benefits of energy storage to a power system with a VSC as the interface between them. First of all, a converter control system is proposed for a two level VSC. In the conventional converter control, the control system usually takes the voltage measured at the point where the converter is connected and calculates the reference voltage for the converter; with a modulation system the converter then produces the required 'average voltage'. In this project, a novel flux modulation scheme, combined with the deadbeat current control strategy, is proposed. The current controller is capable of controlling both positive and negative sequence current components. With flux modulation, the control system measures the bus flux and commands the converter to generate the required flux. Based on the proposed control strategies, several application studies have been carried out. The first application study investigates the effect of energy storage on the power quality at the point of common coupling when a system is subject to load disturbances. The voltage at PCC in a weak network is very sensitive to load changes. A sudden change in active load will cause both a phase jump and a magnitude fluctuation in the bus voltage, whereas reactive load changes mainly affect the voltage magnitude. With the addition of energy storage to a StatCom, it is possible to compensate for the active power change as well as providing reactive power support. In this thesis, some effective active power compensation schemes are proposed. Simulations and experiments have been performed to verify the compensation schemes. The results show that a StatCom with energy storage can significantly reduce phase jumps and magnitude deviations of the bus voltage. pact of the energy storage on the performance of weak systems under fault conditions has been investigated. The investigation was done by studying an example system. The system model was established based on a real system, in which some induction motors driving pumps along a pipeline are fed from a radial transmission line. Studies show that for a weak system with induction motor loads, a StatCom with certain energy storage capacity will effectively improve the system recovery after faults. Although this incurs extra cost for the increasing dc voltage rating and size of the dc side capacitor, the overall rating of the converter can be reduced by utilization of the proposed active power compensation scheme. The last case study investigates the possible use of a StatCom with energy storage to improve the power quality at the point of common coupling where a cyclic load is connected. Studies show that by providing both fast reactive and fast active power support to the network, not only the voltage magnitude can be well controlled, but also the voltage phase jump can be reduced significantly. / QC 20101124

Page generated in 0.0541 seconds