• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 8
  • 1
  • Tagged with
  • 28
  • 28
  • 28
  • 13
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wideband phased array antennas and compact, harmonic-suppressed microstrip filters

Tu, Wen-Hua 15 May 2009 (has links)
Modern satellite, wireless communications, and radar systems often demand wideband performance for multi-channel and multi-function operations. Among these applications, phased array antennas play an important role. This dissertation covers two wideband phased array antennas, one produces linear polarization and one produces circular polarization. The main difference between these two phased array antennas is the antenna array. For the linearly polarized array, a wideband microstrip line to slotline transition is used to feed a Vivaldi antenna. For the circularly polarized array, a wideband microstrip line to parallel stripline transition is used to feed a spiral antenna. From 3 to 12 GHz, the linearly polarized beam is steered over ± 15º. Since the electromagnetic spectrum is limited and has to be shared, interference is getting serious as more and more wireless applications emerge. Filters are key components to prevent harmonic interference. The harmonic signals can be suppressed by cascading additional lowpass filters or bandstop filters. A bandstop filter combining shunt open stubs and a spurline is proposed for a compact size and a deeper rejection. Two lowpass filters with interdigital capacitors and slotted ground structures are also studied. Harmonic suppression can also be achieved with the modification of bandpass filters. Three conventional bandpass filters with spurious passbands are investigated. The first one is a dual-mode patch bandpass filter. The second passband of the proposed filter is at 2.88fo, where fo is the fundametal frequency. The second filter is an open-loop bandpass filter. Two open stubs are added to achieve high suppression in the second harmonic signal. The suppression of 35 dB at the second harmonic is obtained. For the third filter using half-wavelength open stubs, a T-shaped line is used to replace the quarter-wavelength connecting line. The T-shaped line has the same response with the connecting line in the passband. Furthermore, the T-shaped line works as a bandstop filter at the second harmonic. Finally, a new compact slow-wave resonator and bandpass filters are presented. A simple transmission-line model is used to predict the resonant frequency. Compared with the conventional uniform half-wavelength resonator, the slow-wave resonator shows a 25% size reduction.
2

AN AIRBORNE TELEMETRY RELAY SYSTEM FOR THE GULF RANGE

Zoledziowski, Severyn 10 1900 (has links)
International Telemetering Conference Proceedings / October 13-16, 1986 / Riviera Hotel, Las Vegas, Nevada / The Airborne Platform Telemetry Relay System (AP/TM) is currently being built for the Gulf Range Instrumentation System. The AP/TM will allow air-to-air missile test and training missions to be conducted beyond the line-of-sight of land-based instrumentation. The AP/TM is comprised of the following subsystems: C a Telemetry Data Relay C a Sea Surveillance Radar and Radar Data Link C a Drone Control Relay C a UHF Radio Relay The Telemetry Data Relay Subsystem will receive telemetry signals from five independent sources and will retransmit them to land based receiving sites. This subsystem contains a 75 square foot, electronically steerable, five beam phased array antenna and uses polarization diversity to eliminate polarization mismatch loss and to improve reception in the presence of multipath propagation. The AP/TM will also have the capability of relaying four channels of voice communications and drone tracking data and to perform sea surveillance of the mission area. The coordinates of targets detected by the radar will be relayed to the range control center over a high frequency (HF) data link. In addition to the airborne equipment, the system also includes a ground support instrumentation van which is used for pre- and post-flight checkout and maintenance.
3

Optical and Microwave Beamforming for Phased Array Antennas

Fakharzadeh Jahromi, Mohammad 24 November 2008 (has links)
Phased array antenna has been used for a variety of military and civil applications, over the past five decades. Being structurally conformal and flexible, phased array antenna is highly suitable for mobile applications. Besides, it can form the agile or shaped beams required for interference cancellation or multifunction systems. Moreover, the spatial power combination property increases the effective radiated power of a transmitter phased array system. Similarly, in a receiver phased array, beamforming increases the signal to noise ratio by coherent integration of the desired signals. Despite its impressive potentials and properties, phased array antenna has not become a commercial product yet. Cost and complexity of phased array antenna are beyond the scales of consumer electronics devices. Furthermore, calibration is an essential requirement of such a complex system, which is a fairly time-consuming process and requires skilled man power. Moreover, the narrow bandwidth of microwave components degrades the broadband performance of phased array system. Finally, the majority of the beamforming algorithms developed so far have preconditions, which make them unsuitable for a low-cost system. The objective of this thesis is to provide a novel cost-effective solution to minimize the system complexity of the future intelligent antenna systems, without sacrificing the performance. This research demonstrates that a powerful, robust beamforming algorithm, integrated in an efficient single-receiver architecture, constitutes the essence of a low-cost phased array antenna. Thus, a novel beamforming technique, called Zero-knowledge algorithm is developed. It is investigated, both theoretically and experimentally, that the proposed algorithm can compensate for the hardware errors and imperfections of the low-cost components of the system. Zero-knowledge beamforming algorithm possesses significant properties. Neither a priori knowledge of the incoming signal direction, nor the exact characteristics of the phase control network are required in this method. Proper adjustment of the parameters, makes this algorithm appropriate for mobile systems, particularly those installed on vehicles. The algorithm alleviates the drawbacks of analog phase shifters, such as imbalanced insertion loss and fabrication tolerances. Furthermore, this algorithm can serve as the core of a direction-of-arrival estimation technique, which senses the minor deflections of the array heading. For broadband applications optical delay lines must be used in the phase control network of the phased array systems, which are costly. Nevertheless, employing miniaturized delay lines can significantly reduce the device area, and consequently, the fabrication cost. Thus, in this research four types of miniaturized optical delay lines, designed in slow-wave structures, are analyzed, which can provide a large delay per length. In addition, two novel optical beamforming techniques, based upon the properties of Zero-knowledge algorithm, are developed for transmitter and receiver phased arrays.
4

Optical and Microwave Beamforming for Phased Array Antennas

Fakharzadeh Jahromi, Mohammad 24 November 2008 (has links)
Phased array antenna has been used for a variety of military and civil applications, over the past five decades. Being structurally conformal and flexible, phased array antenna is highly suitable for mobile applications. Besides, it can form the agile or shaped beams required for interference cancellation or multifunction systems. Moreover, the spatial power combination property increases the effective radiated power of a transmitter phased array system. Similarly, in a receiver phased array, beamforming increases the signal to noise ratio by coherent integration of the desired signals. Despite its impressive potentials and properties, phased array antenna has not become a commercial product yet. Cost and complexity of phased array antenna are beyond the scales of consumer electronics devices. Furthermore, calibration is an essential requirement of such a complex system, which is a fairly time-consuming process and requires skilled man power. Moreover, the narrow bandwidth of microwave components degrades the broadband performance of phased array system. Finally, the majority of the beamforming algorithms developed so far have preconditions, which make them unsuitable for a low-cost system. The objective of this thesis is to provide a novel cost-effective solution to minimize the system complexity of the future intelligent antenna systems, without sacrificing the performance. This research demonstrates that a powerful, robust beamforming algorithm, integrated in an efficient single-receiver architecture, constitutes the essence of a low-cost phased array antenna. Thus, a novel beamforming technique, called Zero-knowledge algorithm is developed. It is investigated, both theoretically and experimentally, that the proposed algorithm can compensate for the hardware errors and imperfections of the low-cost components of the system. Zero-knowledge beamforming algorithm possesses significant properties. Neither a priori knowledge of the incoming signal direction, nor the exact characteristics of the phase control network are required in this method. Proper adjustment of the parameters, makes this algorithm appropriate for mobile systems, particularly those installed on vehicles. The algorithm alleviates the drawbacks of analog phase shifters, such as imbalanced insertion loss and fabrication tolerances. Furthermore, this algorithm can serve as the core of a direction-of-arrival estimation technique, which senses the minor deflections of the array heading. For broadband applications optical delay lines must be used in the phase control network of the phased array systems, which are costly. Nevertheless, employing miniaturized delay lines can significantly reduce the device area, and consequently, the fabrication cost. Thus, in this research four types of miniaturized optical delay lines, designed in slow-wave structures, are analyzed, which can provide a large delay per length. In addition, two novel optical beamforming techniques, based upon the properties of Zero-knowledge algorithm, are developed for transmitter and receiver phased arrays.
5

An ultra-wideband transmit/receive module using 10 to 35 GHz six-channel microstrip multiplexers and its applications to phased-array antenna transceiver systems

Hong, Seung Pyo 30 October 2006 (has links)
This dissertation introduces new and simple techniques for suppression of multispurious passbands, which are inherent to the conventional microstrip parallel coupleline bandpass filters. In addition, the operation of harmonic suppression is analyzed using a simple model. Special emphasis is placed on the applications of several new filter designs for microstrip diplexers and multiplexers. Compact, full-duplex beam scanning antenna transceiver systems with extremely broad bandwidth have also been developed. Recent advances in broadband monolithic microwave integrated circuit (MMIC) amplifiers make the realization of extremely broadband phased-array transceiver systems possible. The ultra-wideband phased-array transceiver systems can be used in multi-band mobile satellite communication systems and wideband radars. This dissertation presents a multi-band, compact, full-duplex, beam scanning antenna transceiver system for satellite communications and two designs of ultra-wideband, low-cost radar systems as applications of the MMIC amplifiers. In addition, a multi-frequency antenna has been developed. A single-feed triple frequency microstrip patch antenna is presented as an answer to the recent demand for multi-function systems in the wireless communications. In summary, the research presented in this dissertation covers every component required to build an ultra-wideband, full-duplex beam scanning phased-array antenna transceiver. The work done in this dissertation should have many applications in the wireless communication systems and wideband radar technologies.
6

RF MEMS SWITCHES AND PHASE SHIFTERS FOR 3D MMIC PHASED ARRAY ANTENNA SYSTEMS

WANG, YU ALBERT 11 June 2002 (has links)
No description available.
7

Power Beaming and Receiving Systems for Microwave Power Transmission to Fly Drone / ドローン飛行のためのマイクロ波電力伝送のパワービーミング及び受電システムに関する研究

Takabayashi, Nobuyuki 25 July 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24147号 / 工博第5034号 / 新制||工||1786(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 篠原 真毅, 教授 小嶋 浩嗣, 教授 山本 衛 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
8

Study on Beam Forming for Phased Array Antenna of Panel-structured Solar Power Satellite / パネル構造型宇宙太陽発電所におけるフェーズドアレーアンテナのためのビーム形成技術の研究

Ishikawa, Takaki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19712号 / 工博第4167号 / 新制||工||1643(附属図書館) / 32748 / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 篠原 真毅, 教授 土居 伸二, 准教授 小嶋 浩嗣 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
9

Microstrip Patch Electrically Steerable Parasitic Array Radiators

Luther, Justin 01 January 2013 (has links)
This dissertation explores the expansion of the Electrically Steerable Parasitic Array Radiator (ESPAR) technology to arrays using microstrip patch elements. Scanning arrays of two and three closely-coupled rectangular patch elements are presented, which incorporate no phase shifters. These arrays achieve directive radiation patterns and scanning of up to 26° with maintained impedance match. The scanning is effected by tunable reactive loads which are used to control the mutual coupling between the elements, as well as additional loads which compensate to maintain the appropriate resonant frequency. The design incorporates theoretical analysis of the system of coupled antennas with full-wave simulation. A prototype of the threeelement array at 1 GHz is fabricated and measured to exhibit a maximum gain of 7.4 dBi with an efficiency of 79.1%. Further, the microstrip ESPAR is thoroughly compared to uniformlyilluminated arrays of similar size. To satisfy the need for higher directivity antennas with inexpensive electronic scanning, the microstrip ESPAR is then integrated as a subarray. The three-element subcell fabrication is simplified to a single layer with an inverted-Y groove in the ground plane, allowing for DC biasing without the need for the radial biasing stubs or tuning stubs found in the two-layer design. The 1 GHz ESPAR array employs a corporate feed network consisting of a Wilkinson power divider with switchable delay line phase shifts, ring hybrid couplers, and achieves a gain of 12.1 dBi at boresight with ±20° scanning and low side lobes. This array successfully illustrates the cost savings associated with ESPAR subarray scanning and the associated reduction in required number of phase shifters in the RF front end.
10

MAKING MILLIMETER WAVE COMMUNICATION POSSIBLE FOR NON-LINE-OF-SIGHT SCENARIOS: 5G

Prasad, Anurag Shivam 08 November 2017 (has links)
No description available.

Page generated in 0.0759 seconds