Spelling suggestions: "subject:"phasor remeasurements units"" "subject:"phasor remeasurements knits""
1 |
Wide area monitoring and control systems - application communication requirements and simulationChenine, Moustafa January 2009 (has links)
<p>Today’s electrical transmission & distribution systems, are facing a number of challenges related to changing environmental, technical and business factors. Among these factors are, increased environmental restrictions leading to higher share of production from renewable and uncontrollable sources as well as local environmental concerns regarding construction of new transmission and distribution lines. The re-regulation of the electricity market has created a dynamic environment in which multiple organizations have to coordinate and cooperate in the operation and control of the power system. Finally, the high rate of devel-opment within the ICT field is creating many new opportunities for power system opera-tion and control, thanks to introduction of new technologies for measurement, communi-cation and automation.</p><p>As a result of these factors, Wide Area Monitoring and Control (WAMC) systems have been proposed. WAMC systems utilize new ICT based technologies to offer more accurate and timely data on the state of the power system. WAMC systems utilize Phasor Measure-ment Units (PMUs) that have higher data rates and are time synchronised using, GPS satel-lites. This allows synchronized observation of the dynamics of the power system, making it possible to manage the system at a more efficient and responsive level and apply wide area control and protection schemes. The success WAMC systems, on the other hand, are largely dependent on the performance of the Information and Communication Technology (ICT) infrastructure that would support them.</p><p>This thesis investigates the requirements on, and suitability of the ICT systems that support WAMC systems. This was done by identifying WAMC applications and the elicitation of their requirements. Furthermore, a set of simulation projects were carried out to determine the communication system characteristics such as delay and the impact of this delay on the WAMC system.</p><p>This thesis has several contributions. First, it provides summary and analysis of WAMC application priorities and requirements in the Nordic region. Secondly it provides simula-tion based comparison and evaluation of communication paradigms for WAMC systems. The research documented in this thesis addresses these paradigms by providing a compari-son and evaluation through simulation. Thirdly, the thesis provides insight to the possible sources of delay in WAMC architecture and the impact of these delays on data quality specifically data incompleteness. This provides insight on what applications are important to practitioners and what is the expected performance of these applications, as seen from the power system control and operation point of view.</p>
|
2 |
Analyzing Non-Functional Capabilities of ICT Infrastructures Supporting Power System Wide Area Monitoring and ControlChenine, Moustafa January 2013 (has links)
The strain on modern electrical power systems has led to an ever-increasing utilization of new information and communication technologies (ICT) to improve their efficiency and reliability. Wide area monitoring and control (WAMC) systems offer many opportunities to improve the real-time situational awareness in the power system. These systems are essen-tially SCADA systems but with continuous streaming of measurement data from the power system. The quality of WAMC systems and the applications running on top of them are heavily, but not exclusively, dependent on the underlying non-functional quality of the ICT systems. From an ICT perspective, the real-time nature of WAMC systems makes them susceptible to variations in the quality of the supporting ICT systems. The non-functional qualities studied as part of this research are performance, interoperability and cyber security. To analyze the performance of WAMC ICT systems, WAMC applications were identified, and their requirements were elicited. Furthermore, simulation models capturing typical utility communication infrastructure architectures were implemented. The simulation studies were carried out to identify and characterize the latency in these systems and its impact on data quality in terms of the data loss. While performance is a major and desirable quality, other non-functional qualities such as interoperability and cyber security have a significant impact on the usefulness of the sys-tem. To analyze these non-functional qualities, an enterprise architecture (EA) based framework for the modeling and analysis of interoperability and cyber security, specialized for WAMC systems, is proposed. The framework also captures the impact of cyber security on the interoperability of WAMC systems. Finally, a prototype WAMC system was imple-mented to allow the validation of the proposed EA based framework. The prototype is based on existing and adopted open-source frameworks and libraries. The research described in this thesis makes several contributions. The work is a systematic approach for the analysis of the non-functional quality of WAMC ICT systems as a basis for establishing the suitability of ICT system architectures to support WAMC applications. This analysis is accomplished by first analyzing the impact of communication architectures for WAMC systems on the latency. Second, the impact of these latencies on the data quali-ty, specifically data currency (end to end delay of the phasor measurements) and data in-completeness (i.e., the percentage of phasor measurements lost in the communication), is analyzed. The research also provides a framework for interoperability and cyber security analysis based on a probabilistic Monte Carlo enterprise architecture method. Additionally, the framework captures the possible impact of cyber security on the interoperability of WAMC data flows. A final result of the research is a test bed where WAMC applications can be deployed and ICT architectures tested in a controlled but realistic environment. / <p>QC 20130218</p>
|
3 |
Uncertainty and state estimation of power systemsValverde Mora, Gustavo Adolfo January 2012 (has links)
The evolving complexity of electric power systems with higher levels of uncertainties is a new challenge faced by system operators. Therefore, new methods for power system prediction, monitoring and state estimation are relevant for the efficient exploitation of renewable energy sources and the secure operation of network assets. In order to estimate all possible operating conditions of power systems, this Thesis proposes the use of Gaussian mixture models to represent non-Gaussian correlated input variables, such as wind power output or aggregated load demands in the probabilistic load flow problem. The formulation, based on multiple Weighted Least Square runs, is also extended to monitor distribution radial networks where the uncertainty of these networks is aggravated by the lack of sufficient real-time measurements. This research also explores reduction techniques to limit the computational demands of the probabilistic load flow and it assesses the impact of the reductions on the resulting probability density functions of power flows and bus voltages. The development of synchronised measurement technology to support monitoring of electric power systems in real-time is also studied in this work. The Thesis presents and compares different formulations for incorporating conventional and synchronised measurements in the state estimation problem. As a result of the study, a new hybrid constrained state estimator is proposed. This constrained formulation makes it possible to take advantage of the information from synchronised phasor measurements of branch currents and bus voltages in polar form. Additionally, the study is extended to assess the advantages of PMU measurements in multi-area state estimators and it explores a new algorithm that minimises the data exchange between local area state estimators. Finally, this research work also presents the advantages of dynamic state estimators supported by Synchronised Measurement Technology. The dynamic state estimator is compared with the static approach in terms of accuracy and performance during sudden changes of states and the presence of bad data. All formulations presented in this Thesis were validated in different IEEE test systems.
|
4 |
Wide area monitoring and control systems - application communication requirements and simulationChenine, Moustafa January 2009 (has links)
Today’s electrical transmission & distribution systems, are facing a number of challenges related to changing environmental, technical and business factors. Among these factors are, increased environmental restrictions leading to higher share of production from renewable and uncontrollable sources as well as local environmental concerns regarding construction of new transmission and distribution lines. The re-regulation of the electricity market has created a dynamic environment in which multiple organizations have to coordinate and cooperate in the operation and control of the power system. Finally, the high rate of devel-opment within the ICT field is creating many new opportunities for power system opera-tion and control, thanks to introduction of new technologies for measurement, communi-cation and automation. As a result of these factors, Wide Area Monitoring and Control (WAMC) systems have been proposed. WAMC systems utilize new ICT based technologies to offer more accurate and timely data on the state of the power system. WAMC systems utilize Phasor Measure-ment Units (PMUs) that have higher data rates and are time synchronised using, GPS satel-lites. This allows synchronized observation of the dynamics of the power system, making it possible to manage the system at a more efficient and responsive level and apply wide area control and protection schemes. The success WAMC systems, on the other hand, are largely dependent on the performance of the Information and Communication Technology (ICT) infrastructure that would support them. This thesis investigates the requirements on, and suitability of the ICT systems that support WAMC systems. This was done by identifying WAMC applications and the elicitation of their requirements. Furthermore, a set of simulation projects were carried out to determine the communication system characteristics such as delay and the impact of this delay on the WAMC system. This thesis has several contributions. First, it provides summary and analysis of WAMC application priorities and requirements in the Nordic region. Secondly it provides simula-tion based comparison and evaluation of communication paradigms for WAMC systems. The research documented in this thesis addresses these paradigms by providing a compari-son and evaluation through simulation. Thirdly, the thesis provides insight to the possible sources of delay in WAMC architecture and the impact of these delays on data quality specifically data incompleteness. This provides insight on what applications are important to practitioners and what is the expected performance of these applications, as seen from the power system control and operation point of view.
|
Page generated in 0.0831 seconds