• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 10
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preclinical evaluation of the possible enhancement of the efficacy of anti-malarial drugs by pheroid technology / Natasha Langley

Langley, Natasha January 2007 (has links)
Malaria is currently one of the most imperative parasitic diseases of the developing world. Current effective treatment options are limited because of increasing drug resistance, treatment cost effectiveness and treatment availability. Novel drug delivery systems are a new approach for increased efficacy in the treatment of the disease. Pheroid™ technology, a proven drug delivery system, in combination with anti-malarial drugs was evaluated in this study. The aim of this study was to evaluate the possible enhancement of the efficacy of the existing anti-malarial drugs in combination with Pheroid™ technology. The efficacy of existing anti-malarial drugs in combination with Pheroids was investigated in vitro with a chloroquine RB-1-resistant strain of P. falciparum. Two different Pheroid formulations, vesicles and microsponges, were used and the control medium consisted of sterile water for injection. Parasitaemia levels were determined microscopically and expressed as a percentage. An in vivo pilot study was also conducted using the P. berghei mouse model. The mice were grouped into seven batches of three mice each. The control group was treated with a Pheroid vesicle formulation only. Three of the groups were treated with three different concentrations of chloroquine dissolved in water namely 2 mg/kg; 5 mg/kg and 10 mg/kg bodyweight (bw) respectively, while the other three groups received the same three concentrations of chloroquine entrapped in Pheroid vesicle formulations. The measure of parasite growth inhibition (percentage parasitaemia), the survival rates and the percentage chemosuppresion was determined. In the in vivo study, all concentrations of chloroquine entrapped in Pheroid vesicles showed suppressed parasitaemia levels up to 11 days post infection. From day 11, the parasitaemia increases rapidly and becomes higher than that in groups treated with chloroquine in water. Chloroquine entrapped in Pheroid vesicles showed improved activity against a chloroquine resistant strain (RB-1) in vitro. The efficacy was enhanced by 1544.62%. The efficacy of mefloquine, artemether and artesunate in Pheroid microsponges were enhanced by 314.32%, 254.86% and 238.78% respectively. It can be concluded that Pheroid™ technology has potential to enhance the efficacy of anti-malaria drugs. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2008.
2

Preclinical evaluation of the possible enhancement of the efficacy of anti-malarial drugs by pheroid technology / Natasha Langley

Langley, Natasha January 2007 (has links)
Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2008.
3

Preclinical evaluation of the possible enhancement of the efficacy of anti-malarial drugs by pheroid technology / Natasha Langley

Langley, Natasha January 2007 (has links)
Malaria is currently one of the most imperative parasitic diseases of the developing world. Current effective treatment options are limited because of increasing drug resistance, treatment cost effectiveness and treatment availability. Novel drug delivery systems are a new approach for increased efficacy in the treatment of the disease. Pheroid™ technology, a proven drug delivery system, in combination with anti-malarial drugs was evaluated in this study. The aim of this study was to evaluate the possible enhancement of the efficacy of the existing anti-malarial drugs in combination with Pheroid™ technology. The efficacy of existing anti-malarial drugs in combination with Pheroids was investigated in vitro with a chloroquine RB-1-resistant strain of P. falciparum. Two different Pheroid formulations, vesicles and microsponges, were used and the control medium consisted of sterile water for injection. Parasitaemia levels were determined microscopically and expressed as a percentage. An in vivo pilot study was also conducted using the P. berghei mouse model. The mice were grouped into seven batches of three mice each. The control group was treated with a Pheroid vesicle formulation only. Three of the groups were treated with three different concentrations of chloroquine dissolved in water namely 2 mg/kg; 5 mg/kg and 10 mg/kg bodyweight (bw) respectively, while the other three groups received the same three concentrations of chloroquine entrapped in Pheroid vesicle formulations. The measure of parasite growth inhibition (percentage parasitaemia), the survival rates and the percentage chemosuppresion was determined. In the in vivo study, all concentrations of chloroquine entrapped in Pheroid vesicles showed suppressed parasitaemia levels up to 11 days post infection. From day 11, the parasitaemia increases rapidly and becomes higher than that in groups treated with chloroquine in water. Chloroquine entrapped in Pheroid vesicles showed improved activity against a chloroquine resistant strain (RB-1) in vitro. The efficacy was enhanced by 1544.62%. The efficacy of mefloquine, artemether and artesunate in Pheroid microsponges were enhanced by 314.32%, 254.86% and 238.78% respectively. It can be concluded that Pheroid™ technology has potential to enhance the efficacy of anti-malaria drugs. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2008.
4

Evaluation and validation of methods to determine parasitemia in malaria cell cultures / Chrizaan Slabbert

Slabbert, Chrizaan January 2008 (has links)
Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
5

Evaluation and validation of methods to determine parasitemia in malaria cell cultures / Chrizaan Slabbert

Slabbert, Chrizaan January 2008 (has links)
Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
6

Evaluation and validation of methods to determine parasitemia in malaria cell cultures / Chrizaan Slabbert

Slabbert, Chrizaan January 2008 (has links)
Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2009.
7

Formulation, characterization and cellular toxicity of lipid based drug delivery systems for mefloquin / Chrizaan Helena (nee Slabbert)

Helena (nee Slabbert), Chrizaan January 2011 (has links)
Malaria affects millions of people annually especially in third world countries. Increase in resistance and limited research being conducted adds to the global burden of malaria. Mefloquine, known for unwanted adverse reactions and neurotoxicity, is highly lipophilic and is still used as treatment and prophylaxis. Lipid drug delivery systems are commonly used to increase solubility and efficacy and decrease toxicity. The most generally used lipid drug delivery system is liposomes. The lipid bilayer structure varying in size from 25 nm to 100 μm can entrap both hydrophilic and lipophilic compounds. Similar in structure and size to liposomes, Pheroid™ technology consist of natural fatty acids and is also able to entrap lipophilic and hydrophilic compounds. The aim of this study was to formulate liposomes and Pheroid™ vesicles loaded with mefloquine and evaluate the physiochemical characteristic of the formulations followed by efficacy and toxicity studies. Pheroid™ vesicles and liposomes with and without mefloquine were evaluated in size, morphology, pH and entrapment efficacy during three month accelerated stability testing. Optimization of size determination by flow cytometry lead to accurate determination of size for both Pheroid™ vesicles and liposomes. During the three months stability testing, Pheroid™ vesicles showed a small change in size from 3.07 ± 0.01 μm to approximately 3 μm for all three temperatures. Confocal laser scanning microscopic evaluation of the liposomes showed structures uniform in spherical shape and size. No difference in size or structure between the Pheroid™ vesicles with and without mefloquine were obtained. Significant increase (p=0.027) in size from 6.46 ± 0.01 μm to above 10 μm was observed for liposomes at all the temperatures. Clearly formed lipid bilayer structures were observed on micrographs. With the addition of mefloquine to the liposome formulation, a decrease in the amount of bilayer structures and an increase in oil droplets were found. Entrapment efficacy was determined by firstly separating the entrapped drug from the unentrapped drug utilizing a Sephadex®G50 mini column. This was followed by spectrophotometric evaluation by UV-spectrophotometry at 283 nm. Initial entrapment efficacy of both Pheroid™ vesicles and liposomes was above 60%. An increase in entrapment efficacy was observed for Pheroid™ vesicles. The addition of mefloquine to already formulated Pheroid™ vesicles illustrated entrapment efficacy of 60.14 ± 5.59% after 14 days. Formulations loaded with mefloquine resulted in lower pH values as well as a decrease in pH over time. Optimization of efficacy studies utilizing propidium iodide was necessary due to the similarity in size and shape of the drug delivery systems to erythrocytes. A gating strategy was successfully implemented for the determination of the percentage parasitemia. Efficacy testing of mefloquine loaded in Pheroid™ vesicles and liposomes showed a 186% and 207% decrease in parasitemia levels compared to the control of mefloquine. Toxicity studies conducted include haemolysis and ROS (reactive oxygen species) analysis on erythrocytes as well as cell viability on mouse neuroblastoma cells. Pheroid™ vesicles with and without mefloquine resulted in a dose dependent increase in ROS and haemolysis over time. A dose dependent increase in ROS and haemolysis in both liposome formulations were observed, but to a lesser extent. Mefloquine proved to be neurotoxic with similar results obtained when mefloquine was entrapped in liposomes. Pheroid™ vesicles seem to have neuroprotective properties resulting in higher cell viability. Mefloquine could be entrapped successfully in Pheroid™ vesicles and less in liposomes. Pheroid™ vesicles was more stable over a three months accelerated stability testing with more favourable characteristics. The increase in ROS levels of Pheroid™ vesicles could be responsible for the higher efficacy and haemolytic activity. DL-α-Tocopherol in Pheroid™ vesicles possibly acted as a pro-oxidant due to the presence of iron in the erythrocytes. DL-α-Tocopherol showed possible antioxidant properties in the neurotoxicity evaluation resulting in higher cell viability. Even though liposomes illustrated higher efficacy and little haemolysis and ROS production, no difference in neurotoxicity was observed together with unfavourable properties during stability testing makes this drug delivery system less favourable in comparison to Pheroid™ vesicles. Mefloquine was successfully incorporated into Pheroid™ vesicles resulted in high efficacy and showed possible neuroprotection and therefore makes it an ideal system for treatment of malaria. / Thesis (Ph.D. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2011
8

Formulation, characterization and cellular toxicity of lipid based drug delivery systems for mefloquin / Chrizaan Helena (nee Slabbert)

Helena (nee Slabbert), Chrizaan January 2011 (has links)
Malaria affects millions of people annually especially in third world countries. Increase in resistance and limited research being conducted adds to the global burden of malaria. Mefloquine, known for unwanted adverse reactions and neurotoxicity, is highly lipophilic and is still used as treatment and prophylaxis. Lipid drug delivery systems are commonly used to increase solubility and efficacy and decrease toxicity. The most generally used lipid drug delivery system is liposomes. The lipid bilayer structure varying in size from 25 nm to 100 μm can entrap both hydrophilic and lipophilic compounds. Similar in structure and size to liposomes, Pheroid™ technology consist of natural fatty acids and is also able to entrap lipophilic and hydrophilic compounds. The aim of this study was to formulate liposomes and Pheroid™ vesicles loaded with mefloquine and evaluate the physiochemical characteristic of the formulations followed by efficacy and toxicity studies. Pheroid™ vesicles and liposomes with and without mefloquine were evaluated in size, morphology, pH and entrapment efficacy during three month accelerated stability testing. Optimization of size determination by flow cytometry lead to accurate determination of size for both Pheroid™ vesicles and liposomes. During the three months stability testing, Pheroid™ vesicles showed a small change in size from 3.07 ± 0.01 μm to approximately 3 μm for all three temperatures. Confocal laser scanning microscopic evaluation of the liposomes showed structures uniform in spherical shape and size. No difference in size or structure between the Pheroid™ vesicles with and without mefloquine were obtained. Significant increase (p=0.027) in size from 6.46 ± 0.01 μm to above 10 μm was observed for liposomes at all the temperatures. Clearly formed lipid bilayer structures were observed on micrographs. With the addition of mefloquine to the liposome formulation, a decrease in the amount of bilayer structures and an increase in oil droplets were found. Entrapment efficacy was determined by firstly separating the entrapped drug from the unentrapped drug utilizing a Sephadex®G50 mini column. This was followed by spectrophotometric evaluation by UV-spectrophotometry at 283 nm. Initial entrapment efficacy of both Pheroid™ vesicles and liposomes was above 60%. An increase in entrapment efficacy was observed for Pheroid™ vesicles. The addition of mefloquine to already formulated Pheroid™ vesicles illustrated entrapment efficacy of 60.14 ± 5.59% after 14 days. Formulations loaded with mefloquine resulted in lower pH values as well as a decrease in pH over time. Optimization of efficacy studies utilizing propidium iodide was necessary due to the similarity in size and shape of the drug delivery systems to erythrocytes. A gating strategy was successfully implemented for the determination of the percentage parasitemia. Efficacy testing of mefloquine loaded in Pheroid™ vesicles and liposomes showed a 186% and 207% decrease in parasitemia levels compared to the control of mefloquine. Toxicity studies conducted include haemolysis and ROS (reactive oxygen species) analysis on erythrocytes as well as cell viability on mouse neuroblastoma cells. Pheroid™ vesicles with and without mefloquine resulted in a dose dependent increase in ROS and haemolysis over time. A dose dependent increase in ROS and haemolysis in both liposome formulations were observed, but to a lesser extent. Mefloquine proved to be neurotoxic with similar results obtained when mefloquine was entrapped in liposomes. Pheroid™ vesicles seem to have neuroprotective properties resulting in higher cell viability. Mefloquine could be entrapped successfully in Pheroid™ vesicles and less in liposomes. Pheroid™ vesicles was more stable over a three months accelerated stability testing with more favourable characteristics. The increase in ROS levels of Pheroid™ vesicles could be responsible for the higher efficacy and haemolytic activity. DL-α-Tocopherol in Pheroid™ vesicles possibly acted as a pro-oxidant due to the presence of iron in the erythrocytes. DL-α-Tocopherol showed possible antioxidant properties in the neurotoxicity evaluation resulting in higher cell viability. Even though liposomes illustrated higher efficacy and little haemolysis and ROS production, no difference in neurotoxicity was observed together with unfavourable properties during stability testing makes this drug delivery system less favourable in comparison to Pheroid™ vesicles. Mefloquine was successfully incorporated into Pheroid™ vesicles resulted in high efficacy and showed possible neuroprotection and therefore makes it an ideal system for treatment of malaria. / Thesis (Ph.D. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2011
9

The effect of Pheroid™ technology on the bioavailability of quinoline-based anti-malarial compounds in primates

Gibhard, Liezl January 2012 (has links)
Resistance against anti-malarial drugs remains one of the greatest obstacles to the effective control of malaria. The current first-line treatment regimen for uncomplicated P.falciparum malaria is based on artemisinin combination therapies (ACTs). However, reports of an increase in tolerance of the malaria parasite to artemisinins used in ACTs have alarmed the malaria community. The spread of artemisinin-resistant parasites would impact negatively on malaria control. Chloroquine and amodiaquine are 4-aminoquinolines. Chloroquine and amodiaquine were evaluated in a primate model by comparing the bioavailability of these compounds in a reference formulation and also in a Pheroid® formulation. In vivo pharmacokinetic studies were conducted for chloroquine, and in vitro and in vivo drug metabolism and pharmacokinetic (DMPK) studies were conducted for amodiaquine. Pheroid® technology forms the basis of a colloidal drug delivery system, and it is the potential application of this technology in combination with the 4-aminoquinolines that was the focus of this thesis. Pheroid® is a registered trademark but for ease of reading will be referred to as pheroid(s) or pro-pheroid(s) throughout the rest of the thesis. The non-human primate model used for evaluation of the pharmacokinetic parameters was the vervet monkey (Chlorocebus aethiops). Chloroquine was administered orally at 20 mg/kg. A sensitive and selective LC-MS/MS method was developed to analyze the concentration of chloroquine in both whole blood and plasma samples. The Cmax obtained for whole blood was 1039 ± 251.04 ng/mL for the unformulated reference sample of chloroquine and 1753.6 ± 382.8 ng/mL for the pheroid formulation. The AUC0-inf was 37365 ± 6383 ng.h/mL (reference) and 52047 ± 11210 ng.h/mL (pheroid). The results indicate that the use of pheroid technology enhances the absorption of chloroquine. The effect of pheroid technology on the bioavailability of amodiaquine and N-desethylamodiaquine was determined in two groups of vervet monkeys, with the reference group receiving capsules containing the hydrochloride salt of amodiaquine and the test group receiving capsules containing a pro-pheroid formulation of amodiaquine. Amodiaquine was administered at 60 mg/kg. Blood concentrations of amodiaquine and N-desethylamodiaquine samples were monitored over 13 time points from 0.5 to 168 hours. Amodiaquine and pro-pheroid formulated amodiaquine were incubated in vitro with human and monkey liver (HLM and MLM) and intestinal (HIM and MIM) microsomes and recombinant cytochrome P450 enzymes. The in vitro metabolism studies confirm the rapid metabolism of amodiaquine to the main metabolite N-desethylamodiaquine in monkeys. Although the pharmacokinetic parameters varied greatly, parameters for both the parent compound and main metabolite were lower in the test formulation compared to the reference formulation. For HLM, MLM and CYP2C8, the pro-pheroid test formulation showed significantly longer amodiaquine clearance and slower formation of N-desethylamodiaquine. However, the effect was reversed in MIM. Pheroid technology impacts differently on the bioavailability of the various pharmaceutical classes of anti-malarials. Pheroid technology did not enhance the bioavailability of amodiaquine or N-desethylamodiaquine. This is contrary to the observed effects of pheroid technology on the pharmacokinetics of other drugs such as artemisone and chloroquine where it increases the area under the curve and prolongs the drug half-life. / Thesis (PhD (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
10

The effect of Pheroid™ technology on the bioavailability of quinoline-based anti-malarial compounds in primates

Gibhard, Liezl January 2012 (has links)
Resistance against anti-malarial drugs remains one of the greatest obstacles to the effective control of malaria. The current first-line treatment regimen for uncomplicated P.falciparum malaria is based on artemisinin combination therapies (ACTs). However, reports of an increase in tolerance of the malaria parasite to artemisinins used in ACTs have alarmed the malaria community. The spread of artemisinin-resistant parasites would impact negatively on malaria control. Chloroquine and amodiaquine are 4-aminoquinolines. Chloroquine and amodiaquine were evaluated in a primate model by comparing the bioavailability of these compounds in a reference formulation and also in a Pheroid® formulation. In vivo pharmacokinetic studies were conducted for chloroquine, and in vitro and in vivo drug metabolism and pharmacokinetic (DMPK) studies were conducted for amodiaquine. Pheroid® technology forms the basis of a colloidal drug delivery system, and it is the potential application of this technology in combination with the 4-aminoquinolines that was the focus of this thesis. Pheroid® is a registered trademark but for ease of reading will be referred to as pheroid(s) or pro-pheroid(s) throughout the rest of the thesis. The non-human primate model used for evaluation of the pharmacokinetic parameters was the vervet monkey (Chlorocebus aethiops). Chloroquine was administered orally at 20 mg/kg. A sensitive and selective LC-MS/MS method was developed to analyze the concentration of chloroquine in both whole blood and plasma samples. The Cmax obtained for whole blood was 1039 ± 251.04 ng/mL for the unformulated reference sample of chloroquine and 1753.6 ± 382.8 ng/mL for the pheroid formulation. The AUC0-inf was 37365 ± 6383 ng.h/mL (reference) and 52047 ± 11210 ng.h/mL (pheroid). The results indicate that the use of pheroid technology enhances the absorption of chloroquine. The effect of pheroid technology on the bioavailability of amodiaquine and N-desethylamodiaquine was determined in two groups of vervet monkeys, with the reference group receiving capsules containing the hydrochloride salt of amodiaquine and the test group receiving capsules containing a pro-pheroid formulation of amodiaquine. Amodiaquine was administered at 60 mg/kg. Blood concentrations of amodiaquine and N-desethylamodiaquine samples were monitored over 13 time points from 0.5 to 168 hours. Amodiaquine and pro-pheroid formulated amodiaquine were incubated in vitro with human and monkey liver (HLM and MLM) and intestinal (HIM and MIM) microsomes and recombinant cytochrome P450 enzymes. The in vitro metabolism studies confirm the rapid metabolism of amodiaquine to the main metabolite N-desethylamodiaquine in monkeys. Although the pharmacokinetic parameters varied greatly, parameters for both the parent compound and main metabolite were lower in the test formulation compared to the reference formulation. For HLM, MLM and CYP2C8, the pro-pheroid test formulation showed significantly longer amodiaquine clearance and slower formation of N-desethylamodiaquine. However, the effect was reversed in MIM. Pheroid technology impacts differently on the bioavailability of the various pharmaceutical classes of anti-malarials. Pheroid technology did not enhance the bioavailability of amodiaquine or N-desethylamodiaquine. This is contrary to the observed effects of pheroid technology on the pharmacokinetics of other drugs such as artemisone and chloroquine where it increases the area under the curve and prolongs the drug half-life. / Thesis (PhD (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.

Page generated in 0.062 seconds