Spelling suggestions: "subject:"diphosphates -- bsynthesis"" "subject:"diphosphates -- csynthesis""
1 |
Arginine-specific negative regulation of Neurospora crassa arg-2 mediated by the arg-2 uORF and ArginineCarroll, Julie Marie 06 1900 (has links) (PDF)
M.S. / Molecular Biology / Neurospora crassa arg-2 encodes the small subunit of Arg-specific carbamoyl phosphate synthetase and is negatively regulated by arginine. This regulation is mediated by a 24-codon upstream open reading frame (uORF). The sequence of this uORF is critical for Arg-specific regulation. Six mutated templates were used to examine which residues of the uORF are important for this regulation. Mutations were created using megaprimer PCR and a luciferase gene was used as a reporter in the in vitro translation studies. Mutations of Asp 12, Asp 16, and Ser 10 eliminate Arg-specific regulation. Leaky scanning is thought to be involved, and a hypothetical ribosome stalling model that mediates Arg-specific attenuation of translation is proposed.
|
2 |
Sythesis of mesoporous phosphates via solid state reaction at low temperatureLiu, Qi 25 August 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Three parts consist of my thesis work centered on the synthesis of inorganic
phosphates and then metal organic frame work (MOF). The first part is the synthesis of mesoporous chromium phosphates using the room temperature solid state reaction (SSR)approach. One of the major aims of this work is to fill the gap of lacking a low cost, low
or zero pollution, easy method to synthesize phosphates. The room temperature solid state reaction has been demonstrated in this work is such a method. Mesoporous chromium phosphates were prepared using the solid state reaction at low temperature using CrCl3.6H2O, and NaH2PO4.2H2O as precursors and the surfactant cetyltrimethyl ammonium bromide (CTAB) as template. The synthesized chromium phosphates were characterized by XRD, EDS, HR-TEM, N2-physisorption, TG-DSC and UV-Vis spectroscopies. The results indicate that chromium phosphate mesophases were formed only at atomic ratios of P/Cr ≥ 1.8. The mesophase for P/Cr = 2.0 phosphate possessed the highest ordering of pore array, with a specific surface area as high as 250.78 m2/g and an average pore size of 3.48nm. The catalytic performance of the chromium phosphates was examined by employing a model reaction, namely the dehydration of isopropanol to propene. The results indicated that all synthesized chromium phosphates exhibited
significantly higher isopropanol conversions and propene yields than that synthesized via the conventional precipitation route. The highest propene selectivity (96.43%) at the highest isopropanol conversion (93.10%) has been obtained over the mesoporous chromium phosphate catalyst synthesized with a P/Cr atomic ratio of 2.0. The formation
mechanism of the mesoporous chromium phosphate was investigated by FTIR technique.The results show that CTAB template plays a key role in the formation of mesoporous chromium phosphates.
Mesoporous lithium manganese phosphates were also successfully synthesized
using the same approach of solid state reaction (SSR) at low temperature by using LiC2O3.6H2O, MnCl2.6H2O and NH4H2PO4.2H2O as precursors and the surfactant cetyltrimethyl ammonium bromide (CTAB) as template. The synthesized lithium manganese phosphates were characterized by XRD, EDS, SEM, HR-TEM, N2-physisorption. The results show that the synthesized meoporous lithium manganese phosphates exhibited a high specific surface area (256.63 m2/g) and a narrow pore size distribution. The electrochemical tests of Li-ion batteries were performed and the results
show that the charge voltage could increase to be 3.60 V while the first time discharge capacity could be as high as 100 mAh/g.
The Nitro-Cu-MOF complexes, a new class of metal organic frameworks, have
been successfully synthesized using a conventional thermal reaction. The obtained Nitro-Cu-MOFs have a specific surface area of 576.27 m2/g and a pore volume of 0.32 m3/g.The gas uptake of the obtained Nitro-Cu-MOFs at 60 psi is 68 mg/g (sorbate/sorbent) at 298 K for carbon dioxide, which is much higher than that of the Cu-MOFs, 31 mg/g at
298 K for carbon dioxide.
|
3 |
Framework And Layered Transition Metal Phosphates And Related Materials : Synthesis And Investigation Of Structure And PropertiesRangan, K Kasthuri 02 1900 (has links) (PDF)
No description available.
|
4 |
The synthesis and biological evaluation of d-myo-inositol 1,4,5-trisphosphate receptor ligandsKeddie, Neil S. January 2010 (has links)
The intracellular second messenger InsP₃ is a vital molecule in the regulation of Ca²⁺ signalling. Ca²⁺ mediates a wide range of cellular activities from fertilisation and cell differentiation through to apoptoisis. Using X-ray crystal structure data and molecular modelling, a series of novel InsP₃ analogues were designed as selective InsP₃R-antagonists. Two novel synthetic routes have been developed for the synthesis of these analogues. The first route uses a Ferrier-II rearrangement to provide enantiopure inositol intermediates, whereas, the second route employs a diastereomeric resolution to obtain the enantiopure inositols. The successful synthesis of InsP₃ and a series of 5-position modified analogues are reported herein.
|
Page generated in 0.057 seconds