• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la régulation et de la diversité combinatoire des canaux potassiques à deux domaines P de la sous famille TREK / Study of the regulation and the combinatorial diversity of the two pore potassium channels sub family TREK

Comoglio, Yannick 04 November 2016 (has links)
Les canaux potassiques à deux domaines pore sont impliqués dans un grand nombre de mécanismes physiopathologiques. Lors de ma thèse je me suis intéressé à la sous famille TREK dont les membres, TREK-1, TREK-2 et TRAAK jouent un rôle dans la nociception, la dépression et la neuroprotection. Leur activité est finement régulée par des stimuli physicochimiques (Température, étirement, pH), pharmacologiques (anesthésiques volatils, fluxétine,…) et physiologiques (GPCR). Lors de ma thèse je me suis intéressé à deux nouveaux modes de régulation de ces canaux ainsi qu'à leur diversité combinatoire. Tout d'abord j'ai mis en évidence que la phospholipase D2, en interagissant avec TREK1, produit un microenvironnement riche en acide phosphatique qui va potentialiser le canal. Cette régulation explique comment un second messager peut spécifiquement réguler un canal ainsi que la sensibilité de TREK-1 à l'alcool. La seconde étude a porté sur l'hétérodimérisation des membres de la sous-famille TREK. Nous avons mis en évidence grâce à des techniques en molécule unique que les sous-unités TREK-1, TREK-2 et TRAAK peuvent hétérodimériser entre elles. Elles forment ainsi des canaux avec de nouvelles propriétés comme une sensibilité particulière au pH. Enfin j'ai étudié le mécanisme d'action d'une toxine, la mycolactone, sur le canal TRAAK. Nous avons montré que cette toxine est impliquée dans le l'hyperpolarisation des fibres nociceptives induisant une analgésie. Cela étant dû à l'activation du canal TRAAK via le récepteur à l'angiotensine II de type 2. La seconde partie du projet a consisté à caractériser la voie de signalisation non canonique induite par la mycolactone / Two pore potassium channel play a key role in the answers of cells of intra and extracellular signals. I have focus my PhD on the study of sub family TREK (TREK-1, TREK-2 and TRAAK). They involved in the nociception, the depression and the neuroprotection. The activity of this channels is finely tuned by several stimuli i) physicals agents like temperature and mechanical stree, ii) chemicals agents like intra and extracellular pH and phospholipids, iii) pharmacological agents like volatile anesthetics, and iv) neurotransmitters via the G protein–coupled receptor. During my PhD I have worked on two new regulation of this channel and are capacity to make heterodimer. In a first time I discovers that TREK-1 interacted with the phospholipase D2 that permit the local production of phosphatidic acid (PA). This made a PA rich microenvironment, this last will tonicaly potentiate the basal activity of the channel. This mechanism explain have a second massager can specifically regulate a channel and how TREK-1 is sensitive to ethanol. In a second time I have work on the heteromerisation of the sub family TREK. With the single molecule technics we have shown that TREK-1, TREK-2 and TRAAK can heterodimerize. This mechanism increase the functional diversity of the family. To finish I have study the action of the toxin mycolacton on the TRAAK channel. We have shown that the mycolacton induce the hyperpolarization of nociceptive nerfs. This is due to the activation of TRAAK channel by the toxin via the angiotensin 2 receptor type II. Next I have shown that the mycolacton induce a non-canonical pathway. This is independent of G-proteins and spatially restricted by a direct interaction between TRAAK and AT2R
2

GUANINE NUCLEOTIDE EXCHANGE ACTIVITY OF PHOSPHOLIPASE D2 AND ITS REGULATION

Mahankali, Madhupriya 15 September 2014 (has links)
No description available.
3

O papel funcional da enzima fosfolipase D2 (PLD2) nas células da linhagem de mastócitos RBL-2H3 / The role of phospholipase D2 (PLD2) enzyme in mast cell line RBL-2H3

Marchini, Claudia Maria Meirelles 11 November 2008 (has links)
Os mastócitos participam do sistema imunológico liberando mediadores farmacologicamente ativos. A principal via de ativação dos mastócitos é através do receptor de alta afinidade para a imunoglobulina E (FcRI). A ativação dos mastócitos via FcRI culmina com a liberação de mediadores. A enzima PLD atua sobre fosfolipídios hidrolisando a fosfatidilcolina em ácido fosfatídico e colina. A PLD é ativada após o estímulo via FcRI e possui um papel importante na transdução do sinal em mastócitos. Existem duas isoformas da enzima PLD, a PLD1 e a PLD2 que são expressas, diferentemente, de acordo com o tipo celular. Ambas as isoformas podem estar expressas numa mesma célula, apenas uma ou nenhuma. Neste estudo foram utilizadas células RBL-2H3 transfectadas para a super expressão PLD2 nas formas catalítica ativa (CA) e inativa (CI). O papel da PLD2 foi examinado nestas células com o objetivo de elucidar sua atuação no processo de secreção incluindo o aparelho de Golgi e os grânulos secretores. As células CA e CI possuem maior atividavidade de -hexosaminidase total, porém quando estimuladas mostram uma deficiência na liberação desta enzima, quando comparadas com as células selvagens. A PLD2 nas células CA, CI, VET e RBL-2H3 está localizada no citosol, sendo abundante na região justanuclear, principalmente nas células CI, sugerindo uma associação com o aparelho de Golgi. A dupla marcação com o mAb AA4, que imunomarca gangliosídeos derivados do GD1b da membrana plasmática e com anti-PLD2, mostrou que esta enzima não se localiza na membrana plasmática. A dupla marcação com anti-PLD2 e anti-GM130 mostrou que as áreas de maior concentração da PLD2 se co-localizam com o aparelho de Golgi, especialmente nas células CI. A marcação com anti-GM130 e os experimentos com microscopia eletrônica de transmissão mostraram que o aparelho de Golgi está organizado nas células CA e desorganizado nas células CI, onde se encontra disperso no citoplasma. Ainda, as células CI expressam menos GM130 em comparação com as demais linhagens celulares. Quando a produção de PA pela PLD está inibida pelo 1-Butanol, as células CA apresentam as mesmas características fenotípicas das células CI. A incubação das CI com PA resulta na reestruturação do aparelho de Golgi. A manutenção estrutural do aparelho de Golgi, também está relacionada com os microtúbulos. Nas células CI o centro organizador de microtúbulos é dificilmente identificado. Os microtúbulos nas células CI são desordenados em comparação com as demais linhagens celulares. Estes resultados mostram que a produção de PA pela PLD2 é importante na organização de microtúbulos e na manutenção da estrutura do aparelho de Golgi. As alterações celulares relacionadas com os microtúbulos e o aparelho de Golgi afetam o processo secretor nestas células e, provavelmente, em outros tipos de células secretoras. Estes achados poderão levar a novas estratégias terapêuticas para controlar a liberação de mediadores durante processos alérgicos e inflamatórios. / Mast cells are components of the immune system that liberate a wide variety of pharmacologically active mediators. The principle method of activating mast cells is through the high affinity receptor for IgE (FcRI). This activation then culminates with the release of mediators. Phospholipase D (PLD) acts on phospholipids, hydrolyzing phosphatidylcholine to phosphatidic acid (PA) and choline. PLD is activated following stimulation via FcRI and plays an important role in signal transduction in mast cells. PLD has two isoforms, PLD1 and PLD2, which are differentially expressed depending on the cell type where none, one or both may be expressed. RBL-2H3 cells, a mast cell line, transfected to super express catalytically active (CA) and inactive (CI) forms of PLD2 were used in the present study. The role of PLD2 was examined in these cells in order to clarify the action of PLD2 in the secretory process. Although the CA and CI cells posses a greater total -hexosaminidase activity, when stimulated these cells release less -hexosaminidase than cells transfected with empty vector or wild type RBL-2H3 cells. In all cell lines, PLD2 was dispersed throughout the cytoplasm with a concentration in the juxtanuclear region suggesting an association of PLD2 with the Golgi apparatus. Double labeling with anti-PLD2 and mAb AA4, which recognizes gangliosides derived from GD1b on the plasma membrane, showed that PLD2 was not associated with the plasma membrane. When the cells were double labeled with anti-PLD2 and anti-GM130, which labels the cis-Golgi saccules, PLD2 does colocalize with the Golgi apparatus, especially in CI cells. Labeling with anti-GM130 alone as well as experiments employing transmission electron microscopy revealed that the Golgi apparatus is well organized in the CA cells, but is disorganized and dispersed in the cytoplasm in the CI cells. By Western Blotting, the CI cells also expressed less GM130 than the other cell lines. When the production of PA by PLD2 was inhibited by 1-Butanol, the Golgi apparatus of the CA cells presented the same phenotypic characteristics as that of the CI cells. Conversely, incubation of the CI cells with PA resulted in the reorganization of the Golgi apparatus. The structural maintenance of the Golgi apparatus is also related to microtubules. In the CI cells, the microtubule organizing center was difficult to identify and the microtubules were disorganized in the cytoplasm as compared to the other cell lines. These results show that the production of PA by PLD2 is important in the arrangement of the microtubules and in maintaining the structure of the Golgi apparatus. Alterations in the distribution of the microtubules and the structure of the Golgi apparatus in the CI cells affect the secretory process in these cells, and such alterations may affect the secretory process in other cell types as well. The findings presented here may lead to new therapeutic strategies to control the production and release of mediators during allergic and inflammatory processes.
4

O papel funcional da enzima fosfolipase D2 (PLD2) nas células da linhagem de mastócitos RBL-2H3 / The role of phospholipase D2 (PLD2) enzyme in mast cell line RBL-2H3

Claudia Maria Meirelles Marchini 11 November 2008 (has links)
Os mastócitos participam do sistema imunológico liberando mediadores farmacologicamente ativos. A principal via de ativação dos mastócitos é através do receptor de alta afinidade para a imunoglobulina E (FcRI). A ativação dos mastócitos via FcRI culmina com a liberação de mediadores. A enzima PLD atua sobre fosfolipídios hidrolisando a fosfatidilcolina em ácido fosfatídico e colina. A PLD é ativada após o estímulo via FcRI e possui um papel importante na transdução do sinal em mastócitos. Existem duas isoformas da enzima PLD, a PLD1 e a PLD2 que são expressas, diferentemente, de acordo com o tipo celular. Ambas as isoformas podem estar expressas numa mesma célula, apenas uma ou nenhuma. Neste estudo foram utilizadas células RBL-2H3 transfectadas para a super expressão PLD2 nas formas catalítica ativa (CA) e inativa (CI). O papel da PLD2 foi examinado nestas células com o objetivo de elucidar sua atuação no processo de secreção incluindo o aparelho de Golgi e os grânulos secretores. As células CA e CI possuem maior atividavidade de -hexosaminidase total, porém quando estimuladas mostram uma deficiência na liberação desta enzima, quando comparadas com as células selvagens. A PLD2 nas células CA, CI, VET e RBL-2H3 está localizada no citosol, sendo abundante na região justanuclear, principalmente nas células CI, sugerindo uma associação com o aparelho de Golgi. A dupla marcação com o mAb AA4, que imunomarca gangliosídeos derivados do GD1b da membrana plasmática e com anti-PLD2, mostrou que esta enzima não se localiza na membrana plasmática. A dupla marcação com anti-PLD2 e anti-GM130 mostrou que as áreas de maior concentração da PLD2 se co-localizam com o aparelho de Golgi, especialmente nas células CI. A marcação com anti-GM130 e os experimentos com microscopia eletrônica de transmissão mostraram que o aparelho de Golgi está organizado nas células CA e desorganizado nas células CI, onde se encontra disperso no citoplasma. Ainda, as células CI expressam menos GM130 em comparação com as demais linhagens celulares. Quando a produção de PA pela PLD está inibida pelo 1-Butanol, as células CA apresentam as mesmas características fenotípicas das células CI. A incubação das CI com PA resulta na reestruturação do aparelho de Golgi. A manutenção estrutural do aparelho de Golgi, também está relacionada com os microtúbulos. Nas células CI o centro organizador de microtúbulos é dificilmente identificado. Os microtúbulos nas células CI são desordenados em comparação com as demais linhagens celulares. Estes resultados mostram que a produção de PA pela PLD2 é importante na organização de microtúbulos e na manutenção da estrutura do aparelho de Golgi. As alterações celulares relacionadas com os microtúbulos e o aparelho de Golgi afetam o processo secretor nestas células e, provavelmente, em outros tipos de células secretoras. Estes achados poderão levar a novas estratégias terapêuticas para controlar a liberação de mediadores durante processos alérgicos e inflamatórios. / Mast cells are components of the immune system that liberate a wide variety of pharmacologically active mediators. The principle method of activating mast cells is through the high affinity receptor for IgE (FcRI). This activation then culminates with the release of mediators. Phospholipase D (PLD) acts on phospholipids, hydrolyzing phosphatidylcholine to phosphatidic acid (PA) and choline. PLD is activated following stimulation via FcRI and plays an important role in signal transduction in mast cells. PLD has two isoforms, PLD1 and PLD2, which are differentially expressed depending on the cell type where none, one or both may be expressed. RBL-2H3 cells, a mast cell line, transfected to super express catalytically active (CA) and inactive (CI) forms of PLD2 were used in the present study. The role of PLD2 was examined in these cells in order to clarify the action of PLD2 in the secretory process. Although the CA and CI cells posses a greater total -hexosaminidase activity, when stimulated these cells release less -hexosaminidase than cells transfected with empty vector or wild type RBL-2H3 cells. In all cell lines, PLD2 was dispersed throughout the cytoplasm with a concentration in the juxtanuclear region suggesting an association of PLD2 with the Golgi apparatus. Double labeling with anti-PLD2 and mAb AA4, which recognizes gangliosides derived from GD1b on the plasma membrane, showed that PLD2 was not associated with the plasma membrane. When the cells were double labeled with anti-PLD2 and anti-GM130, which labels the cis-Golgi saccules, PLD2 does colocalize with the Golgi apparatus, especially in CI cells. Labeling with anti-GM130 alone as well as experiments employing transmission electron microscopy revealed that the Golgi apparatus is well organized in the CA cells, but is disorganized and dispersed in the cytoplasm in the CI cells. By Western Blotting, the CI cells also expressed less GM130 than the other cell lines. When the production of PA by PLD2 was inhibited by 1-Butanol, the Golgi apparatus of the CA cells presented the same phenotypic characteristics as that of the CI cells. Conversely, incubation of the CI cells with PA resulted in the reorganization of the Golgi apparatus. The structural maintenance of the Golgi apparatus is also related to microtubules. In the CI cells, the microtubule organizing center was difficult to identify and the microtubules were disorganized in the cytoplasm as compared to the other cell lines. These results show that the production of PA by PLD2 is important in the arrangement of the microtubules and in maintaining the structure of the Golgi apparatus. Alterations in the distribution of the microtubules and the structure of the Golgi apparatus in the CI cells affect the secretory process in these cells, and such alterations may affect the secretory process in other cell types as well. The findings presented here may lead to new therapeutic strategies to control the production and release of mediators during allergic and inflammatory processes.

Page generated in 0.0628 seconds