• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carboxylates in the rhizosphere of canola, wheat, lupins and pulses : their role in P acquisition from sparingly soluble forms

Pearse, Stuart James January 2006 (has links)
[Truncated abstract] Native Australian soils contain very low amounts of phosphorus. The soils of southwestern Australia are ancient and highly weathered. Consequently, the availability of phosphorus in these soils is too low for cropping purposes, so the application of P is necessary to maintain productivity. When P is applied to soil, typically as soluble superphosphate, it tends to be transformed to increasingly less soluble forms over time. Sparingly soluble forms of soil P are relatively inaccessible to Triticum aestivum; however, many grain legumes have a higher P-acquisition efficiency, allowing them to access pools of soil P that T. aestivum cannot. The P-acquisition efficiency of some grain legumes has been attributed in part to their ability to release large quantities of carboxylates, coupled with the development of cluster roots for species such as Lupinus albus. There are a number of unexplained observations in terms of the P-acquisition efficiency of grain legume species and the way that those species respond to P fertilisation. This PhD project aimed to study carboxylate release from a range of crop species, and investigate its role in variation among species for acquisition of phosphorus from sparingly soluble forms (chapter 1). ... L. albus (chapter 5). There was considerable variation in P acquisition among accessions. The variation cannot be attributed to differences in carboxylate release, cluster-root development or whole root system rhizosphere extract pH as measured in this study. We hypothesise that the variation might be attributed to differences in the ratio of release of protons and other cations localised around cluster roots. In conclusion studies of carboxylate exudation and sparingly soluble forms should use more than a single form if the aim is to draw generalised conclusions on P-uptake efficiency from sparingly soluble forms. Comparative studies of a range of species are a useful tool for enhancing our understanding of root physiology. While the benefit of carboxylates for providing access to poorly soluble P has been demonstrated, questions remain as to potential other roles for carboxylates, particularly in species that do not form cluster roots. Variation in P uptake among accessions of L. albus is present, and more work on proton release and ion balance of root clusters is necessary to understand intraspecific variation.

Page generated in 0.0638 seconds