• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nucleoside diphosphokinase of Escherichia coli and its interactions with bacteriophage T4 proteins of DNA synthesis

Ray, Nancy Bisset 08 May 1992 (has links)
Graduation date: 1993
22

Deletion of the phosphoinositide-3-kinase RhoGAP domain to assess inhibition of Staphylococcus aureus infection / RhoGAP deletion

Haaning, Kelsey L. January 2008 (has links)
It is important to understand the mechanism of endocytic invasion into the host cell by Staphylococcus aureus. Activation of phosphoinositide-3-kinase (PI3K) is essential to S. aureus invasion. In a normal cell, the p85 subunit of PI3K is bound at the Rho GTPase activating protein (RhoGAP) domain to small guanosine triphosphate binding proteins (GTPases), which are attached to the cell membrane by a prenyl group. This association anchors PI3K near the cellular membrane. PI3K must be anchored near the membrane in order to phosphorylate its substrate. The hypothesis for this project is that deletion of the binding domain between PI3K and small GTPases will block endocytic bacterial invasion by sequestering PI3K in the cytosol. To investigate this hypothesis, the RhoGAP binding domain of PI3K p85 was mutated using site-directed mutagenesis and S. aureus invasion was reduced by up to 86% (p<0.05), which shows that this domain is important to bacterial invasion. / Department of Biology
23

Structure determination of Methanocaldococcus jannaschii nucleoside kinase /

Arnfors, Linda. January 2005 (has links)
Licentiatavhandling (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 3 uppsatser.
24

Exploring sequence-structure-function relationships in proteins using classification schemes

Cheek, Sara Anne. January 2005 (has links) (PDF)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Not embargoed. Vita. Bibliography: 182-209.
25

Seleção de compostos como candidatos para a inibição da atividade de proteínas cinases humanas da família das Neks / Compound selection as candidates dor inhibition of kinase activity of human Neks

Moraes, Eduardo Cruz, 1986- 21 August 2018 (has links)
Orientador: Jörg Kobarg / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-21T00:18:21Z (GMT). No. of bitstreams: 1 Moraes_EduardoCruz_M.pdf: 2623796 bytes, checksum: 858f8566bae7879895e451ce06ad3bfb (MD5) Previous issue date: 2012 / Resumo: Cinases desempenham um papel importante na ativação de vias bioquímicas em células eucarióticas. Neks (NIMA related kinases) são uma família conservada de proteínas cinases relacionadas à progressão do ciclo celular e divisão celular, contendo em torno de 40% de identidade no domínio catalítico N-terminal com a proteína NIMA (Never in Mitosis, gene A) de Aspergillus nidulans. As cinases Neks são também descritas como relacionadas a patologias, particularmente câncer. Por estas características, as Neks são alvos potenciais para o tratamento de cânceres e desenvolvimento de drogas anti-câncer. Neste trabalho foram selecionados compostos em uma biblioteca de 87 compostos para os domínios de cinase mutados de hNek1, hNek2, hNek6, hNek8 e hNek9 e o domínio de cinase selvagem de hNek7, através de um ensaio de deslocamento térmico. Neste ensaio, foi identificado pelo menos um composto com um deslocamento da Tm significativo para a hNek1 ('delta'262-1258)-(T162A), E08 ('delta'Tm = 4.0ºC); outro, E04 ('delta'Tm = 6.5ºC) para a hNek6(S206A), e vários compostos para a hNek7wt e hNek2(_272-445)-(T175A). Destes compostos, B03 e F04 foram validados por docking no sítio de ligação de ATP da hNek7wt, enquanto B08 e E03 foram validados por reduzir a atividade da hNek7wt até 26,4% e 43,3%, respectivamente, na concentração de 312,5 nM. Além disso, o composto E04 foi capaz de reduzir a atividade da hNek6(S206A) pela metade com um IC50 próximo de 1,25 ?M. São necessários experimentos funcionais adicionais para validação desses dados, e estudos estruturais com resolução atômica serão importantes para caracterizar a associação de hNek1('delta'262-1258)-(T162A), hNek6(S206A) e hNek7 selvagem com esses e outros compostos / Abstract: Kinases play an important role in the activation of biochemical pathways in eukaryotic cells. Neks (NIMA related kinases) are a conserved kinase protein family related to cell cycle progression and cell division, containing about 40% identity in the N-terminal catalytic domain with the protein NIMA (Never in Mitosis, gene A) of Aspergillus nidulans. Nek kinases are also described as related to pathologies, particularly cancer. For these characteristics, Neks are potential targets for treatment of cancers and development of anti-cancer drugs. Here we screened the recombinant activation loop mutant kinase domains of hNek1, hNek2, hNek6, hNek8 and hNek9 and wild-type hNek7 against 87 compounds using thermal shift denaturation and identified at least one compound with significant Tm shift for hNek1('delta'262-1258)-(T162A), E08 ('delta'Tm = 4.0ºC), another one, E04 ('delta'Tm = 6.5ºC) for hNek6(S206A), but not for the other hNek6 variants, and several hit compounds for hNek7wt and hNek2('delta'272-445)-(T175A). From these, compounds B03 and F04 were validated by docking into the ATP-binding site of hNek7wt, while B08 and E03 were validated by reducing hNek7wt activity up to 26.4% and 43.3%, respectively, at a 312.5 nM concentration. We also found that mutant hNek6, without the activation loop conserved phosphorylation, is a better target for inhibitor stabilization than an activated more phosphorylated hNek6 kinase. Moreover, compound E04 was later confirmed to reduce hNek6(S206A) activity by half with IC50 near to 1.25 ?M. Further functional experiments in living cells are required to validate this findings, and structural studies with atomic resolution will be important to characterize the association of hNek1('delta'262-1258)-(T162A), hNek6(S206A) and wild-type hNek7 with these and other compounds / Mestrado / Bioquimica / Mestre em Biologia Funcional e Molecular
26

Investigation of antiviral and anticancer nucleoside analog substrate recognition of drosophila melanogaster and herpes virus deoxyribonucleoside kinases /

Solaroli, Nicola, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
27

Pl3-kinase mediates cSrc activation and podosome formation through the adaptor protein, AFAP-110, in response to PKC[alpha] activation

Walker, Valerie Glynis. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains viii, 306 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
28

Mechanistic studies on quinolinate phosphoribosyltransferase

Catton, Gemma Rachel January 2008 (has links)
Quinolinate phosphoribosyltransferase (QPRTase, EC 2.4.2.19) is an intriguing enzyme which appears to catalyse two distinct chemical reactions; transfer of a phosphoribosyl moiety from 5-phosphoribosyl-1-pyrophosphate to the nitrogen of quinolinic acid and decarboxylation at the 2-position to give nicotinic acid mononucleotide. The chemical mechanism of QPRTase is not fully understood. In particular, enzymatic involvement in the decarboxylation step is yet to be conclusively proven. QPRTase is neurologically important as it degrades the potent neurotoxin, quinolinic acid, implicated in diseases such as Huntington’s disease and AIDS related dementia. Due to its neurological importance and unusual chemistry the mechanism of QPRTase is important. Described here is a mechanistic study on human brain QPRTase. Human brain QPRTase was successfully expressed in E. coli BL21 (DE3) from the pEHISTEV-QPRTase construct and the protein was efficiently purified by nickel affinity chromatography. The crystal structure was solved using multiwavelength methods to a resolution of 1.9 Å. Human brain QPRTase was found to adopt an energetically stable hexameric arrangement. The enzyme was also found to exist as a hexamer during gel filtration under physiological conditions. Kinetic studies allowed the measurement of the kinetic parameters for quinolinic acid. The data gave a Km of 13.4 ± 1.0 μM and a Vmax of 0.92 ± 0.01 μM min-1. There was no evidence for cooperative binding of quinolinic acid to the six subunits of the QPRTase hexamer. The enzyme showed maximum activity at approximately pH 6. The active site of human brain QPRTase is a deep pocket with a highly positive electrostatic surface composed of three arginine residues, two lysine residues and one histidine residue. Mutation of these residues resulted in either complete loss or significant reduction in enzymatic activity showing they are important for binding and/or catalysis. A possible mechanism involving QPRTase in the decarboxylation of quinolinic acid mononucleotide was proposed. A series of quinolinic acid analogues were synthesised and tested as inhibitors of QPRTase. The inhibition studies highlighted some key interactions in the active site.
29

Studies on the regulatory roles of cholesterol and bile acids /

Murphy, Charlotte, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
30

The regulation and role of hypoxia inducible factor-1 (HIF-1) in human cancer

Skinner, Heath Devin. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains vi, 156 p. : ill. (some col.). Includes abstract. Includes bibliographical references.

Page generated in 0.0459 seconds