Spelling suggestions: "subject:"photo cynamic 20therapy"" "subject:"photo cynamic bodytherapy""
1 |
An in vitro and ex vivo Photodynamic Therapy Study of Methylene Blue and Natural Extracts in Association with Nail Penetration Carrier Against Trichophyton rubrum InfectionsLiu, Lijun January 2019 (has links)
Human fungal superficial infections are mainly caused by dermatophytes. These infections are distributed worldwide, common for people of all ages, in both sexes. The current treatments include taking oral antifungal drugs and topical therapy. However, treatments of superficial infections can be challenging in children and elderly mainly due to compliance issues and associated potential health risks and side-effects. Photo dynamic therapy (PDT) is a novel approach to treat fungal superficial infections. In this approach, light is used to excite a photosensitizer to turn readily available oxygen into reactive oxygen species (ROS) to kill the pathogen. In this research, we have used the pathogenic dermatophyte Trichophyton rubrum as a model to screen for photosensitizers and identify the best combinations of photosensitizer X carrier X light exposure time against T. rubrum. I obtained the In vitro photosensitizers’ Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), carrier inhibitory and fungicidal combinations experimental results. In addition, ex vivo experimental results for photosensitizer and carrier systematic treatments are presented with both nail pieces and nail well apparatus. The in vitro results confirm the fungicidal ability of photosensitizer Methylene Blue and natural extracts Inula, Propolis and St. John’s Wort to T. rubrum. For ex vivo experiments, among the three natural extracts, only Inula showed promising fungicidal effect on nail pieces. Methylene Blue and carrier, Methylene Blue plus Inula and carrier combinations at certain concentrations all showed strong nail penetration ability and fungicidal effect against T. rubrum infection. These results suggest promising avenues for further clinical research and application of PDT. / Thesis / Master of Applied Science (MASc)
|
2 |
Photodynamic therapy in the head and neck / Fotokemisk behandling av tumörer inom huvud- och halsområdetvon Beckerath, Mathias January 2014 (has links)
Photodynamic therapy, PDT, is a method to diagnose and treat cancer. In PDT a sensitizer is administered to the patient and this sensitizer is accumulated in tumors. If the sensitizer-containing tumor is subjected to a laser of a specific wavelength the tumor is fluorescing allowing diagnostics. If other wavelengths are used a process involving reactive oxygen species and singlet oxygen is started and the tumor cells are killed. This process thus requires oxygen as well. This thesis investigates how UV-induced damage of the skin and different physiological factors of the skin influences the uptake of 5- aminolevulinic acid, ALA, and its conversion to the active sensitizer protoporphyrin IX, PpIX. It shows that UV-induced damage affects both the uptake and production of PpIX. UV-induced damage lowers the PpIX produced after ALA application both if the damage is acute and in chronically UV-affected skin. The PpIX production differs inter and intra individually. When looking how different physiological factors affect the PpIX production after topically applied ALA the thesis shows that an increase of temperature increases the production. No correlation between the formation of PpIX and the density of hair follicles was found and a weak correlation was seen comparing the epidermal and total dermal thickness and PpIX production The thesis also shows how PDT is used in treating laryngeal malignancies. It shows that it is possible to cure laryngeal tumors (both squamous cell carcinomas and sarcomas) using PDT primarily, and that the cure rate as well as outcome of voice and patient safety is comparable to the conventional treatment modalities. PDT can also be used as a function and organ sparing treatment for recurring laryngeal cancers, both squamous cell carcinomas and sarcomas.
|
3 |
[pt] DESENVOLVIMENTO DE DIODOS ORGÂNICOS EMISSORES DE LUZ (OLEDS) PARA APLICAÇÕES EM TERAPIA FOTODINÂMICA / [en] DEVELOPMENT OF ORGANIC LIGHT EMITTING DIODES (OLEDS) FOR PHOTODYNAMIC THERAPY APPLICATIONSALINE MAGALHAES DOS SANTOS 12 March 2024 (has links)
[pt] Este trabalho teve como objetivo o desenvolvimento de Diodos Orgânicos
Emissores de Luz, OLED, para aplicações em terapia fotodinâmica. A terapia
fotodinâmica é uma forma de tratamento que utiliza, basicamente, um
fotossensibilizador e luz. Quando irradiado o fotossensibilizador produz espécies
reativas de oxigênio que podem destruir organismos como fungos, vírus, bactérias
e células tumorais. Esse trabalho se dedica a fabricação, caracterização e teste de
OLEDs como fontes de luz para terapia fotodinâmica, PDT, representando uma
alternativa as formas convencionais de tratamento médico. Como forma de testar o
desempenho dos dispositivos foram realizados ensaios de PDT. Esses ensaios
consistem em utilizar uma sonda sensível à presença do oxigênio singleto (1O2). A
sonda utilizada foi o DPBF que, na presença do 1O2, rompe um dos seus anéis
aromáticos. Esse efeito pode ser acompanhado pelo decaimento da intensidade do
pico de absorção da sonda. Sabendo o intervalo de tempo entre cada medida é
possível inferir o decaimento da sonda a fim de comparar o desempenho dos
dispositivos.
Para validar o teste, foi realizado um estudo de referência utilizando um LED
comercial com pico de emissão em 658nm. Essa etapa foi fundamental para
compreensão das condições que as fontes de luz devem ter para que os ensaios
fossem realizados em tempos similares aos tratamentos envolvendo terapia
fotodinâmica. Após isso, o trabalho consistiu na fabricação de OLEDs de três tipos
de camadas emissoras: fluorescente, fosforescente e TADF. As escolhidas para esse
trabalho foram: Alq3: DCM2, Bebq2:Ir(pic)3, BCPO: Ir(fliq)2acac e mCP: TXO −
TPA , cuja banda de emissão se sobrepõe a banda de absorção do fotossensibilizador
utilizado, o azul de metileno. Na primeira etapa foram fabricados OLEDs de área
pequena, 3mm2
. Após as escolhas das estruturas, fabricação e as medidas de
caracterização elétrica, foram realizados os ensaios de PDT. Para os ensaios
iniciais, foram utilizadas duas fontes de alimentação dos OLEDs, modo AC e DC a
fim de avaliar o desempenho dos dispositivos em diferentes configurações. Tendo
como destaque os OLEDs de camada emissora Alq3: DCM2 e Bebq2:Ir(pic)3 (em
modo DC) e BCPO: Ir(fliq)2acac (em modo AC), pois conseguiram estimular o
fotossensibilizador azul de metileno a produzir oxigênio singleto suficiente para
decair o pico de absorção da sonda DPBF no intervalo de tempo do ensaio de PDT
(30 minutos).
Na etapa seguinte, foram selecionados os OLEDs de camada emissora
Alq3: DCM2 e Bebq2:Ir(pic)3 com o objetivo de testar o desempenho dos
dispositivos de área ativa 27mm2
, sendo chamados nessa tese de área grande.
Apresentando destaque os dispositivos Bebq2:Ir(pic)3. Também foram realizadas
comparações entre os OLEDs de área grande e pequena, tanto em perda de potência
(por cento) no tempo quando nos ensaios de PDT. Como o melhor desempenho foi obtido
com o área grande, essa estrutura foi utilizada na fabricação dos OLEDs
Bebq2:Ir(pic)3 sobre substratos conformáveis comerciais de celulose bacteriana
(BC), amida de bloco de poliéter (PEBAX) e poliuretano (PU), funcionalizados no
LOEM, e polietileno tereftalato (PET).
Essa pesquisa é inovadora no Brasil e de grande interdisciplinaridade pois
envolve o estudo na arquitetura, fabricação, caracterização dos OLEDs à ensaios
em Terapia fotodinâmica. Além de englobar a possibilidade de incluir a síntese de
novos materiais e testes in vitro e in vivo. Esse trabalho é também o início de uma
nova linha de pesquisa com aplicação biológica no grupo LOEM. / [en] This work aimed to develop Organic Light Emitting Diodes, OLED, for
applications in photodynamic therapy. Photodynamic therapy is a treatment that
basically uses a photosensitizer and light. When irradiated, the photosensitizer
produces reactive oxygen species that destroy cells such as fungi, viruses, bacteria
and tumor cells. This work is dedicated to the fabrication, characterization and tests
of OLEDs as light sources for photodynamic therapy, PDT, representing an
alternative to classical forms of medical treatment. As a way of testing the
performance of the devices, PDT tests were carried out. These tests consist of using
a probe sensitive to the presence of singlet oxygen (1O2). The probe used was DPBF
which, in the presence of 1O2, breaks one of its aromatic rings. This effect can be
followed by the decay of the intensity of the probe s absorption peak. The time
interval between each measurement is set on the measurement, it is possible to infer
the probe decay in order to compare the performance of the devices.
To validate the test, a reference study was carried out using a commercial
LED with an emission peak at 658nm. This step was fundamental for understanding
the conditions that the light sources should have so that the tests could be carried
out in times similar to the treatments involving photodynamic therapy. After that,
the work consisted of manufacturing OLEDs with three types of emitting layers:
fluorescent, phosphorescent and TADF. The emission layers chosen were:
Alq3: DCM2, Bebq2:Ir(pic)3, BCPO: Ir(fliq)2acac and mCP:TXO-TPA , whose
emission band is similar to the absorption band of the photosensitizer used, blue of
methylene. In the first part were manufactures OLEDs with a small area, 3mm2
.
After choosing the structures, fabrication and electrical characterization measures,
the PDT tests were carried out. For the initial tests, two OLED power supplies were
used, AC and DC mode, in order to evaluate the performance of the devices in
different configurations. Highlighting the emitting layer OLEDs Alq3: DCM2 and
Bebq2:Ir(pic)3 (in DC mode) and BCPO: Ir(fliq)2 acac (in AC mode), as they
managed to stimulate the photosensitizer methylene blue to produce enough singlet
oxygen to decay the peak absorption of the DPBF probe in the time interval of the
PDT assay (30 minutes). On next step, the OLEDs selected were one with the
emitting layer Alq3: DCM2 and Bebq2: Ir(pic)3 with the objective of testing the
performance of the devices with an active area of 27mm2
, called large area.
Introducing featured devices Bebq2:Ir(pic)3. Comparisons between large and
small area OLEDs were also made in power loss (percent) over time and in PDT tests.
As the best performance was obtained with the large area, this structure was used
in the manufacture of OLEDs Bebq2: Ir(pic)3 on commercial conformable
substrates of bacterial cellulose(BC), polyether block amide (PEBAX) and
polyurethane (PU), functionalized in LOEM, and polyethylene terephthalate( PET).
This research is innovative in Brazil and highly interdisciplinary as it involves
the study of architecture, fabrication, characterization and tests in PDT and has the
possibility of involving the synthesis of new materials and in vitro and in vivo tests.
This work is also the beginning of a new line of research with biological application
at LOEM group.
|
Page generated in 0.3448 seconds