Spelling suggestions: "subject:"photolithography"" "subject:"photolighography""
1 |
Milestones in lithographed cartography from 1800Mumford, Ian January 1999 (has links)
No description available.
|
2 |
Antireflection and self-cleaning structures for solar cells using laser interference nanolithographyZhao, Le January 2015 (has links)
This research comprehensively reviews the properties of regular micro and nano structures fabricated by laser interference lithography and reports on their applications in the antireflection and self‐cleaning surface. The research systematically investigates the laser interference lithography technology taking into account its advantages and abilities to realize various potential applications. Multiple‐beam interference lithography systems are constructed. Laser interference interaction with silicon wafer is analysed and the optical and hydrophobic properties are obtained via measurements. In order to fabricate the extremely low reflection and very large contact angle for solar cells, fabrication methods of antireflection and self‐cleaning are surveyed and their advantages and disadvantages compared. The research investigates the effect of heat transfer and the radiation of laser interference plasma on silicon wafer surfaces and proposes equations of heat flow and radiation effects of laser plasma of interfering patterns in a four‐beam laser interference distribution. Following the irradiation, the silicon wafer surface is covered with a periodic array of micrometer and nanometer‐sized structures, which have the shape of grating, cone and hole. The research also investigates the effect of different laser parameters on the optical and hydrophobic properties of the structured silicon wafer surface. The results of periodic hexagonally‐distributed hole structures fabricated by three‐beam laser interference reveals excellent design guidelines for obtaining an extremely low solar‐weighted reflection, (SWR, 1.86%) and relatively large contact angle (140°) which can provide a strong self‐cleaning capability on the solar cell surface. In addition, the research creates a novel dual structure with antireflection and superhydrophobic properties fabricated by three‐beam laser interference lithography. The fabrication method is three‐beam laser interference combined with focused laser processing interacting on the silicon wafer surface. This kind of structure has a very low SWR (3.6 %) and extremely large contact angle which is more than 150° in the wavelength range from 380 nm to 780 nm. The research shows that the laser interference lithography technology can be employed and further developed to fabricate micro and nano structures of strong antireflection and self‐cleaning functions for applications in solar cells.
|
3 |
Substrate Engineering to Control the Synthesis of Carbon NanotubesKrishnaswamy, Arvind January 2014 (has links)
No description available.
|
4 |
Processing of Sub-micrometer Features for Rear Contact Passivation Layer of Ultrathin Film Solar Cells Using Optical LithographyRoxner, Evelina, Olsmats Baumeister, Ronja January 2019 (has links)
Thin film copper, indium, gallium, selenide (CIGS) solar cells are promising in the field of photovoltaic technology. To reduce material and fabrication cost, as well as increasing electrical properties of the cell, research is ongoing towards ultra-thin film solar cells (absorption layer thickness less than 500 nm). Ultra-thin CIGS solar cells has shown a decrease in interface recombination and improved optical properties when adding a rear contact passivation layer of aluminium oxide. In this work, the process of creating sub-micrometer features of a passivation layer using conventional optical lithography is investigated. To specify, the objective was to optimize the development conditions in the optical lithography process when fabricating equidistant line contacts in aluminium oxide with 800 nm feature size. It was found that line contacts with smaller feature sizes require longer development time, than line contacts with larger feature sizes. The experiments conducted showed that the pre-set development and exposure conditions used by the NOA group are not optimized for 800 nm or smaller line contacts. Further, for the optical lithography process, silicon substrates are not comparable with substrates of soda lime glass coated with molybdenum. Slight underdevelopment of a sample, showed line contacts smaller than the resolution of the laser used in the exposure – suggesting an alternative method of processing small line contacts with optical lithography.
|
Page generated in 0.0316 seconds