• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 267
  • 14
  • 10
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 381
  • 381
  • 205
  • 200
  • 72
  • 71
  • 70
  • 68
  • 67
  • 61
  • 51
  • 48
  • 48
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The photoelectron spectra and valence electronic structure of (η⁵ - C₅H₅) Mn (CO)₂ SO₂ and (η⁵ - C₅H₄CH₃) Mn (CO)₂ SO₂

Campbell, Andrew Craig January 1979 (has links)
No description available.
32

Gas-Phase Photoelectron Spectroscopy and Computational Studies of [FeFe]-Hydrogenase Inspired-Catalysts for Hydrogen Production

Lockett, Lani Victoria January 2009 (has links)
The work presented in this dissertation focuses on the [FeFe]-hydrogenase active site as inspiration for the design and synthesis of complexes capable of the electrocatalytic generation of molecular hydrogen from protons and electrons. The majority of work discussed uses gas-phase photoelectron spectroscopy (PES) and density functional theory (DFT) to probe and analyze the bonding and electron distribution in potential catalysts. These two techniques are also used to explore the nature of cyanide as a ligand, due to its presence and unknown role in these enzymes. This dissertation begins with the study of (η⁵-C₅H₅)Fe(CO)₂X (FpX) and (η⁵- C₅Me₅)Fe(CO)₂X (Fp*X) complexes where X = H⁻, Cl⁻, and CN⁻ to assess and compare their π-accepting abilities, which is contradicted in the literature. The shifts in ionization energies measured by PES provide a measure of the relative bonding effects. The results indicate cyanide is, overall, a weak π-acceptor, and the σ- and π-donor interactions are important to understanding the chemistry. The molecule [(μ-ortho-C₆H₄S₂)][Fe(CO)₃]₂ was examined, in part due to the delocalized π-orbitals of the C₆H₄S₂ ligand, which could facilitate the redox chemistry necessary for catalysis. Computations show that upon ionization, the complex adopts a semi-bridging carbonyl; termed “rotated structure”. The reorganization energy of this geometry change was determined, which may provide understanding of how the active site in the enzyme enables electron transfer to achieve this catalysis. Next complexes of the form (μ-SCH₂XCH₂S)[Fe(CO)₃]₂, where X=CH₂, O, NH, ᵗBuN, MeN, were explored in order to provide insight to the unknown atom at the central bridging position of the alkyl chain in the [FeFe]-hydrogenase enzyme. The likelihood of a rotated cationic structure is also shown, with reorganization energy values similar to that seen for [(μ-ortho-C₆H₄S₂)][Fe(CO)₃]₂. The final chapter explores the replacement of selenium for sulfur in (μ- X(CH₂)₃X)[Fe(CO)₃]₂ and (μ-X(CH₂)₂CH(CH₃)X)[Fe(CO)₃]₂, where X is either sulfur or selenium. The PES data show destabilization of the selenium complex ionizations compared to the sulfur complexes and a lower reorganization energy was calculated. The computed HOMO-LUMO gap energy for the selenium-based complex is roughly 0.17 eV smaller than for the sulfur analogs, which may indicate a lower reduction potential is needed.
33

Preparation and Characterization of Hydrogenase Enzyme Active Site-inspired Catalysts: The Effects of Alkyl Bulk and Conformer Strain as Studied by Photoelectron Spectroscopy, Electrochemistry and Computational Methods

Petro, Benjamin J. January 2009 (has links)
A series of alkyldithiolatodiironhexacarbonyl complexes of the form &mu:-(RS2)Fe2(CO)6, where RS2 is: 1,2-ethanedithiolate (eth-cat), cis-1,2-cyclopentanedithiolate (pent-cat), cis-1,2-cyclohexanedithiolate (hex-cat), and 2-exo,3-exo-bicyclo[2.2.1]heptanedithiolate (norbor-cat), are reported. These complexes display structures and catalytic behavior toward production of molecular hydrogen with similarities to the active site of the diiron hydrogenase enzymes. Hydrogen production is desirable as an alternative fuel source and these catalysts are capable of producing H2 in the presence of weak acid under electrochemical conditions. Through understanding of the factors which control the catalytic activity of these catalysts it may be possible to contribute to the development of a hydrogen fuel economy.Significant scan-rate dependence under electrochemical conditions is observed, resulting in an initial 1-to-2 electron reduction depending on how quickly the singly reduced species can reorganize. The rate of this reorganization directly corresponds to the internal strain within the system and can be ranked in the following order of increasing rate of reorganization: pent-cat < norbor-cat < eth-cat < hex-cat. Additionally, these catalysts all successfully catalyze protons to molecular hydrogen under electrochemical conditions in the presence of acetic acid via an ECEC catalytic mechanism, where, E is an electrochemical step (reduction) and C is a chemical step (protonation).Density functional theory computations support the reported catalytic processes by calculating physically observable quantities, such as: pKa values, reduction potentials, adiabatic ionization energies and carbonyl stretching frequencies in the infrared (IR) region. These quantities were used to suggest reasonable reactive intermediates within the catalytic cycle. The electronic structure of each catalyst was examined using photoelectron spectroscopy and the global minimum cationic structure, in all cases, involves a structure with a bridging carbonyl ligand, akin to that of the enzyme active site.The most significant outcome of this work is the unprecedented diiron center rotation upon reduction. As conformational strain involving the dithiolate ligand increases, the rate of reorganization of the anion increases leading to cleavage of an iron-sulfur bond to provide an alternative protonation site, a key step toward molecular hydrogen formation. This site is less basic than the unrotated form and helps evolve H2 with thermodynamic favorability.
34

ELECTRONIC STRUCTURE AND REACTION DYNAMICS OF MOLECULAR AND CLUSTER ANIONS VIA PHOTOELECTRON IMAGING

Pichugin, Kostyantyn January 2010 (has links)
The electronic structure and reaction dynamics of molecular and cluster anions in the gas phase has been investigated using negative ion velocity-map imaging photoelectron spectrometer. Photoelectron images provide important information about both energies and symmetries of the parent anion orbitals from which photoelectron originates. The symmetry and the ordering of several low-lying electronic states of neutral nitromethane (X¹A′, a³A″, b³A″, and A¹A″) are assigned based on a group theoretical analysis of the transitions angular distributions and the results of DFT calculations. The through-bond electronic coherence in meta- and para-dinitrobenzene anions is explored by recording a series of photoelectron images in 532-266 nm wavelength range. Photoelectron angular distributions for both isomers exhibit oscillatory behavior characteristic of the quantum interference effect, suggesting that dinitrobenzene anions retain their high symmetry electronic structures in the gas phase. Photoelectron imaging experiments on [O(N₂O)(n)]⁻, n =0–9 at 266 and 355 nm provide clear evidence of a switch from the cova)lent NNO₂⁻ cluster core to the atomic O⁻ core occurring between n = 3 and 4. The experimental results and theoretical modeling indicate that despite the greater stability of NNO₂⁻ relative to the O⁻ + N₂O⁻ dissociation limit, an O⁻ cluster core becomes energetically favored over NNO₂⁻ for n > 3, due to the more efficient solvation of the atomic anion. The photodissociation dynamics of I₂⁻ and IBr⁻ anions on the respective A' excited-state anion potentials is effectively unraveled in 780 nm pump - 390 nm probe time-resolve experiments. The time-dependent photoelectron spectra and classical trajectory calculations of the IBr⁻ dissociation provide the first rigorous dynamical test of the recently calculated A′ potential for this system. The photoelectron anisotropy cyclic variation observed in photodissociation of I₂⁻ is interpreted in the context of dual-center quantum interference model. The 390 nm pump – 390 nm probe experimental data reveal fast (≤100 fs) and delayed (~ 700 fs) appearance of the I⁻ channel in the photodissociation of I₂Cl⁻ and BrICl⁻ anions respectively. The difference in the reaction time-scales is attributed to the distinct dissociation pathways available for the anions to form I⁻ product.
35

Photoemission study of solid surfaces and interfaces

He, Zhong-Xiang January 1990 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1990. / Includes bibliographical references (leaves 118-122) / Microfiche. / xv, 122 leaves, bound ill. 29 cm
36

Photomanipulation of biomolecular architecture and surface wettability /

Lake, Nicola. Unknown Date (has links)
Thesis (PhD)--University of South Australia, 2003.
37

Interfaces of electrical contacts in organic semiconductor devices

Demirkan, Korhan. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: Robert L. Opila, Dept. of Materials Science & Engineering. Includes bibliographical references.
38

Ionization of large molecules with short laser pulses,

Kjellberg, Mikael, January 2010 (has links)
Diss. (sammanfattning) Göteborg : Univ. , 2010. / Härtill 5 uppsatser.
39

Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes

Stevens, J.S., Byard, S.J., Seaton, Colin C., Sadiq, G., Davey, R.J., Schroeder, S.L.M. 05 November 2013 (has links)
Yes / The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid–base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as 15N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of 15N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry. / EPSRC, Sanofi-Aventis
40

Surface Characterization of Rh-Co, Ru-Co and Pd-Co Bimetallic Catalysts

Moorthiyedath, Sajeev 02 August 2003 (has links)
Methanation of CO2, a greenhouse gas component, using bimetallic catalysts is considered. Rh, Pd and Ru were combined separately with Co on silica support to form bimetallic catalysts with 5 % metal loading and atomic ratio to Co equal to 1. Pore volume of the silica was measured using physisorption analysis. The unreduced catalyst samples were characterized using XPS, TPR and SEM-EDS. XPS results showed low Rh, Pd, Ru and Co concentrations at the surface for the three bimetallic catalysts. The oxidation states of metals detected by XPS supported the likely presence of metals in their oxide form. Detection of alloys and/or bimetallic particles on the surface of the catalysts was difficult through the XPS results, but presence of bimetallic particles was confirmed in Ru-Co and Pd-Co catalysts through the TPR results. Surface segregation of cobalt was observed. This was supported and extended to other metals through the SEM-EDS results.

Page generated in 0.0517 seconds