• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 877
  • 65
  • 60
  • 33
  • 24
  • 12
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 1354
  • 554
  • 517
  • 327
  • 290
  • 282
  • 200
  • 198
  • 147
  • 144
  • 127
  • 125
  • 124
  • 103
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Plasmonic waveguides and resonators for optical communication applications

Song, Yi January 2011 (has links)
Photonic circuits can transmit data signals in a much higher speed thanconventional electronic circuits. However, miniaturization of photonic circuitsand devices is hindered by the existence of light diffraction limit. A promisingsolution to this problem is by exploiting plasmonic systems for guiding andmanipulating signals at optical frequencies. Plasmonic devices are generallycomposed of noble metals and dielectrics, whose interfaces can confine surfaceplasmon polaritons, a hybrid wave that is free of diffraction limit. Plasmonicwaveguides and devices are serious contenders for achieving next-generationphotonic integrated circuits with a density comparable to the electronic counterpart. This thesis addresses the design issues of passive plasmonic devices whichare critical for realization of photonic integration, including plasmonic waveguides,splitters, couplers, and resonators, investigated with both the finitedifferencetime-domain method and the finite-element method. In particularwe present, firstly, a coupler which efficiently couples light between a silicondielectric waveguide and a hybrid plasmonic (HP) waveguide. A coupling efficiencyas high as 70% is realized with a HP taper as short as 0.4μm. Theexperimental result agrees well with the numerical simulation. Secondly, wenumerically investigate and optimize the performances of 1×2 and 1×3 HPmultimode interferometers (MMIs), which split light from a silicon waveguideto multiple HP waveguides. Total transmission over 75% can be achieved inboth cases. Thirdly, we study the coupling and crosstalk issues in plasmonicwaveguide systems. Several methods for crosstalk reduction are proposed.Finally, HP nanodisk micro-cavities are designed and are numerically characterized.With a radius of 1μm, a high quality factor of 819 and a highPurcell factor of 1827 can be simultaneously achieved, which can be useful forrealizing efficient nano-lasers. / QC 20110523
72

Design and fabrication of photonic crystal fibers for nonlinear microscopy /

Zheng, Juanjuan. January 2008 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 82-93). Also available in electronic version.
73

Modeling of interdiffusion mechanism in III-V semiconductor quantum well for photonics applications /

Chan, Yung. January 1998 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 91-92).
74

Photonic module integration based on silicon, ceramic and plastic technologies /

Keränen, Kimmo. January 1900 (has links) (PDF)
Thesis (doctoral)--University of Oulu, 2008. / Includes bibliographical references. Also available on the World Wide Web.
75

Light-induced forces on small particles /

Ng, Jack Tsz Fai. January 2005 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 137-141). Also available in electronic version.
76

Fluorescence and lasing in dye-doped 1D photonic bandgap structures from dichromated gelatin /

Kok, Mang Hin. January 2007 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2007. / Includes bibliographical references (leaves 110-116). Also available in electronic version.
77

Silicon microring and microdisk-based active devices using integrated p-i-n diodes /

Zhou, Linjie. January 2007 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2007. / Includes bibliographical references (leaves 129-147). Also available in electronic version.
78

Optical and geometric control of light propagation in planar silicon photonic crystal structures /

Ndi, Francis C. January 2006 (has links)
Thesis (Ph. D.)--Lehigh University, 2006. / Vita. Includes bibliographical references and vita.
79

The development of ultraviolet light emitting diodes on p-SiC substrates

Brummer, Gordon Clark 10 July 2017 (has links)
Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10^7 cm^-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers and introduce sub-bandgap absorption, making them undesirable in the n-AlGaN layers. n-Al0.60Ga0.40N grown under stoichiometric Ga flux and an In surfactant reduced the Stokes shift (compared to n-AlGaN grown without In) by 150 meV. However, even under these growth modes, some compositional inhomogeneity persisted which is speculatively attributed to the vicinal substrate. Device epitaxial layer stacks utilizing the optimum growth conditions were fabricated into prototype vertical UV LEDs which emit from 295-320 nm. In order to increase light extraction efficiency, UV distributed Bragg reflectors (DBRs) based on compositionally graded AlGaN alloys were designed using the transfer matrix method (TMM) and grown by MBE. DBRs were formed from repeated compositionally graded AlGaN alloys. This structure utilized the polarization doping and index of refraction variation of graded composition AlGaN. DBRs with square wave, sinusoidal, triangular, and sawtooth compositional profiles were realized, with reflectivity peaks over 50%, centered at 280 nm.
80

Real-Time Interrogation of Optical Sensors Based on Wavelength-to-Time Mapping

Deng, Hong January 2018 (has links)
Theoretical and experimental studies of real-time interrogation of optical sensors based on wavelength-to-time (WTT) mapping are presented. The sensing information is encoded in the spectrum of an optical sensor, and transferred to the time domain by using WTT mapping. Utilizing digital electronics for post processing, the sensing information can be interrogated at an ultra-high speed and resolution. Two sensors based on WTT mapping are proposed and demonstrated. First, a random grating sensor for simultaneous measurement of the temperature and strain is investigated. An ultra-short pulse from a mode-lock laser is spectrum shaped by a high-birefringence random grating to generate two orthogonally polarized spectrums, which are then fed to an optical loop in which a linearly chirped fiber Bragg grating is incorporated. Linear WTT mapping is implemented, and two temporally separated optical pulses are generated, and then converted to two electrical waveforms at a photodetector. Pulse compression is then employed. By measuring the temporal intervals of the temporally compressed pulses, the strain and temperature information can be retrieved. Conventional fiber based sensors are not sensitive to the refractive index change of the environment. In the second sensor, a silicon photonic microdisk resonator (MDR) for temperature and liquid refractive index sensing is proposed and demonstrated. By using the notches in the spectrum of the MDR, a microwave photonic filter (MPF) is implemented. By feeding a linearly chirped microwave signal to the MPF, a filtered signal with its temporal location representing the spectrum is generated. By monitoring the time location of the filtered signal, the temperature or the refractive index information is revealed.

Page generated in 0.0397 seconds