• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 12
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Photosensitizing properties of non-transition metal porphyrazines towards the generation of singlet oxygen

Seotsanyana-Mokhosi, Itumeleng 02 May 2013 (has links)
Metallophthalocyanine complexes containing non-transition metals are very useful as sensitizers for photodynamic therapy, a cure for cancer that is based on visible light activation of tumour localized photo sensitizers. Excited sensitizers generate singlet oxygen as the main hyperactive species that destroy the tumour. Water soluble sensitizers are sought after for the convenience of delivery into the body. Thus, phthalocyanine (pc), tetrapyridinoporphyrazines (tppa) and tetramethyltetrapyridinoporphyrazines (tmtppa) with non-transition central metal atoms of Ge, Si, Sn and Zn were studied. First was the synthesis of these complexes, followed by their characterisation. The characterisation involved the use of ultraviolet and visible absorption spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, electrochemical properties and elemental analysis. Photochemical properties of the complexes were then investigated. Photolysis of these macrocycles showed two processes; -reduction of the dye and photobleaching, which leads to the disintegration of the conjugated chromophore structure of the dye. Photobleaching is the reductive quenching of the excited state of the sensitizers. The intensity of the quenching decreased progressively from tmtppa, tppa to pc metal complexes with photobleaching quantum yields, 6.6 x 10.5⁻¹, 1.8 x 10.5⁻¹ and 5.4 x 10⁻⁶ for Zntmtppa, Zntppa and Znpc, respectively. Efficiency of singlet oxygen sensitization is solvent dependent with very different values obtained for the same compound in different solvents, for example, 0.25 and 0.38 were observed as singlet oxygen quantum yields for Gepc complex in DMSO and DMF respectively. In DMSO the efficiency of ¹O₂ generation decrease considerably from pc to tppa and finally tmtppa. In water Getmtppa exhibits much higher singlet oxygen quantum yield, hence promising to be effective as a sensitizer for photodynamic therapy.
12

Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer / Produção de metabólitos primários e secundários em capim-braquiária em adubação nitrogenado

Hussain, Syeda Maryam 31 May 2016 (has links)
Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the literature about SM in Brachiaria, metabolites production and its chemical profile enable us to focus not only on the nutritive value but to get answers in all aspects and especially on toxicity. The study was conducted in the period of december 2013 to december 2014; in greenhouse FZEA-USP. B. decumbens was used with two cutting heights (10 and 20 cm) and nitrogen doses (0, 150, 300 and 450 kg ha-1) in complete randomized block design. The bromatological analysis were carried out on near infrared spectroscopy. Generally, the application of 150 kg ha-1 N was sufficient to promote the nutritional value in B. decumbens but above it the nitrogen use efficiency decline significantly. The highest dry matter yield (99.97 g/pot) was observed in autumn and the lowest was in winter (30.20 g/pot). While, as per nitrogen dose the average highest dry matter yield was at 150 kg ha-1 (79.98 g/pot). The highest crude protein was observed in winter (11.88%) and the lowest in autumn (7.78%). By the cutting heights; the 10 cm proved to have high CP (9.51%). In respect of fibrous contents, the highest acid detergent fiber was noted in summer (36.37%) and lowest in winter (30.88%). While the neutral detergent fiber was being highest in autumn and lowest in spring (79.60%). The highest in vitro dry matter and organic matter digestibilities were noted at 300 kg ha-1 N; being 68.06 and 60.57%; respectively; with the lowest observed in without N treatments (62.63% and 57.97), respectively. For determination of the classes, types and concentration of SM in B. decumbens, phytochemical tests, thin layer and liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis were carried out. Height, nitrogen and seasons significantly (P <0.0001) affected the secondary metabolic profile. A new protodioscin isomer (protoneodioscin (25S-)) was identified for first time in B. decumbens and is supposed to be the probable toxicity reason. Its structure was verified by 1D and 2D NMR techniques (1H, 13C) and 1D (COSY-45, edited HSQC, HMBC, H2BC, HSQC -TOCSY, NOESY and 1 H, 1 H, J). All factors influence the metabolic profile significantly (P <0.0001). The lowest phenols were at 300 kg ha-1 while the lowest flavones were at 0 kg ha-1. Season wise the highest phenols occurred in autumn (19.65 mg/g d.wt.) and highest flavones (28.87 mg/g d.wt.) in spring. Seasons effect the saponin production significantly (P <0.0001) and the results showed significant differences in the protodioscin (17.63±4.3 - 22.57±2.2 mg/g d.wt.) and protoneodioscin (23.3±1.2 - 31.07±2.9 mg/g d.wt.) concentrations. The highest protodioscin isomers concentrations were observed in winter and spring and by N doses the highest were noted in 300 kg ha-1. Simply, all factors significantly played their role in varying concentrations of secondary metabolites. / As plantas produzem diversas substâncias e produtos e os metabólitos primários e secundários (MS) estão entre eles, apresentando tanto efeitos benéficos como limitação de utilização. Geralmente, a forrageiras não são consideradas tóxicas aos animais ou como fonte de MS. As espécies de braquiárias são caracterizadas pelo alto valor nutricional, entretando a Brachiaria decumbens é a espécie mais tóxica para causar a fotossensibilização. A ausência de informações detalhadas na literatura a respeito de MS, sua produção e perfil químico nos faz focar não somente no aumento da produção de matéria fresca e no valor nutritivo da planta mas, em obter respostas em todos os aspectos e na redução de sua toxicidade. O estudo foi conduzido no período de dezembro 2013 ate dezembro 2014, em casa de vegetação localizada na FZEA-USP. Utilizou-se duas alturas de corte (10 e 20 cm) e quatro doses de nitrogênio (0, 150, 300 e 450 kgoha-1) em delineamento de blocos casualizados (4x2). Altura, doses de N e estação afetaram significativamente o perfil de MS. Houve aumento na produção de saponina nas estações da primavera e outono devido ao estresse. A análise bromatológica foi feita por espectroscopia de infravermelho próximo. Geralmente, a aplicação de 150 kgoha-1 de N foi suficiente para promover o valor nutricional na B. decumbens, entretanto acima desse valor a eficiência de uso de Nitrogênio decai significativamente. A maior produção de matéria seca (MS) (99,97 g/vaso) foi observada no outono e a menor foi no inverno (30,20 g/vaso). Embora, de acordo com a dose de nitrogênio, o maior rendimento médio de matéria seca foi de 150 kgoha-1 (79,98 g/vaso). Observou-se que o maior teor de proteína bruta (CP) foi no inverno (11,88%) e o menor foi no outono (7,78%). Pelas alturas de corte, os 10 cm provaram ter alta CP (9,51%). A respeito do conteúdo fibroso, o maior teor de fibra detergente ácida foi observado no verão (36,37%) e o teor mais baixo no inverno (30,88%). Por outro lado, o teor da fibra em detergente neutro foi maior no outono e o menor teor na primavera (79,60%). As maiores digestibilidades in vitro da matéria seca e matéria orgânica foram observadas em 300 kgoha-1 de N, sendo 68,06% e 60,57% com o menor valor observado em tratamentos sem N (62,63% e 57,97%), respectivamente. Para determinação das classes, tipos e concentração de MS em B. decumbens, foram realizados testes por fitoquímico, cromatografia de camada fina, cromatografia líquida acoplada à espectrometria de massa e ressonância magnética nuclear. Foi identificado um novo isômero de protodioscina (protoneodioscina (25S-) pra primeria vez na B. decumbens que é supostamente a provável razão da toxicidade. Sua estrutura foi verificada pelo 1D e 2D (1H combinação de 1D (1H, 13C) e a técnica 1D RMN (COSY-45, editado HSQC, HMBC, H2BC, HSQC-TOCSY, NOESY e 1H, 1H, J) como O-α-L -rhamnopyranosyl- (1 4) -O-β-D- glucopiranosil- (1 6) -O-β-D-6-O-acetylglucopyranosyl-] (1 2) - p-D-glucopiranosil-28 medicagen. Todos os fatores influenciaram o perfil metabólico significativamente (P <0,0001). Para flavonas, a menor produção foi observada em outono (19,65 mg/g peso seco (p.s)) e a maior na primavera (28.87 mg/g p.s). As concentrações de saponina foram afetadas significativamente (P<0,0001) pelas estações e os resultados mostraram diferenças na protodioscina (17,63±4,3 - 22,57±2,2 p.s) e protoneodioscina (23,3±1,2 - 31,07±2,9 p.s). Os maiores teores da concentração dos isômeros de protodioscina foram observados no inverno e na primavera e em relação ao N aplicado, o maior teor foi de 300 kgoha-1. Simplesmente, todos os fatores influenciaram significativamente a variação das concentrações dos metabólitos secundários.
13

Phase I animal safety study of new second generation porphyrin based photosensitizers in the Syrian Golden hamster

Wittmann , Johannes , Clinical School - South Western Sydney, Faculty of Medicine, UNSW January 2007 (has links)
Pancreatic cancer kills over 1700 people each year in Australia. In 2000, there were 1908 new cases diagnosed and it remains one of the least treatable malignancies. In the USA, it was the fourth leading cause of cancer death in 2004, with 31,860 new cases and 31,270 recorded deaths. Photodynamic therapy (PDT) is a novel, potentially useful treatment for locally advanced pancreatic cancer with only limited research and clinical work addressing this until now. PDT induces non-thermal, cytotoxic and ischaemic injury to a targeted volume of tissue. During PDT, a photosensitizer is activated by non-thermal light in the presence of oxygen, generating cytotoxic oxygen species and inducing cellular injury and microvascular occlusion. The aim of this thesis was to conduct an animal safety study using two second generation photosensitizers, talaporfin sodium and verteporfin, to assess the risks of pancreatic PDT by looking at injury to organs adjacent to the pancreas and assessing recovery from PDT treatment of the pancreas. The Syrian Golden hamster animal model was used to compare the results of this research to previous work by other authors. The study design incorporated a number of additional experiments, including quantitative tissue fluorescence techniques, plasma level analysis and histopathology techniques. The methods for the animal safety study were similar to the approach used in the clinical setting and provided vital data on the likely risks and side effects of phototherapy in humans. The first study, looking at talaporfin sodium, found likely risks of duodenal injury, gastric injury and death with a limited effect on normal pancreas at photosensitizer doses likely to be employed for pancreatic cancer PDT. The second study, using verteporfin, found similar results with a more potent effect on the normal pancreas at studied drug doses. Both agents had short drug-light intervals, ranging from 15 minutes to 2 hours, reducing the need for pre-treatment hospitalization and short photosensitivity periods of about one to two weeks. Some animals suffered minor cutaneous photosensitivity injuries. A human pancreatic cancer PDT pilot study is feasible and the risks and complications should be acceptable.
14

Syntheses and DNA Interactions of Acridine and Phenothiazine Based Photosensitizers

Wilson, Beth 04 December 2006 (has links)
Photosensitizing molecules and/or metal complexes that interact with DNA via intercalation and groove binding have potential applications as molecular structural probes, as footprinting reagents and in photodynamic therapeutics. To this regard, small molecules that bind to DNA and the energetics involved in these interactions, acridine-based therapeutics, photosensitization, photodynamic therapy, phenothiazine-mediated photosensitization, DNA photocleavage reaction mechanisms and photosensitizing metal complexes are introduced in Chapter I. Next, in Chapter II, the synthesis of a photonuclease consisting of a 3,6-acridinediamine chromophore attached to four metal-coordinating imidazole rings is described. The DNA photocleavage yields, emission quantum yields, and thermal denaturation studies by this acridine-imadazole conjugate in the presence of 16 metal salts are also reported. In Chapter III is the synthesis of a bisacridine covalently tethered to a copper(II)-binding pyridine linker. Additionally, DNA photocleavage studies as well as DNA binding affinity and binding mode(s) of this bisacridine incorporating the copper(II)-binding pyridine linker are examined. The syntheses, characterization, DNA photocleavage studies, DNA thermal denaturation, and viscometric measurements of three new phenothiazinium photosensitizers are described in Chapters IV and V. Collectively, markedly enhanced DNA photocleavage yields are observed in the presence of metals (Chapters II-III) or in comparison to a parent molecule, Chapters II and IV. DNA melting isotherms show higher levels of duplex stabilization with the acridines, specifically in the presence of several metals (Chapter II-III) as well as with the phenothiazine-based ligands (Chapters IV-V). Moreover, different DNA binding modes were observed depending on metal complexation (Chapter III) and nucleic acid structure (Chapter IV). Finally, Chapter VI describes a small project implemented as a National Science Foundation pedagogical laboratory exercise in which a non-invasive procedure for DNA isolation from human cheek cells was utilized with the polymerase chain reaction to amplify alleles encoding a single nucleotide polymorphism involved in normal human color vision.
15

Substituted Quinoxaline And Benzimidazole Containing Monomers As Long Wavelength Photosensitizers For Diaryliodonium Salt Initiators In Photopolymerization

Corakci, Bengisu 01 January 2013 (has links) (PDF)
In this study / ferrocenyl and naphthalenyl substituted quinoxaline derivatives / 5,8- bis (2,3- dihydrothieno [3,4-b] [1,4] dioxin-5-yl)-2- (naphthalen-2-yl)- 3- ferrocenyl- 4a,8a-dihydroquinoxaline / 5,8- bis (2,3-dihydrothieno [3,4-b] [1,4]dioxin-5-yl) -2- (phenyl) -3-ferrocenylquinoxaline / 5,8-bis (2,3-dihydrothieno [3,4-b] [1,4]dioxin-5-yl) -2,3- di(naphthalen-2-yl)quinoxaline and trihexylthiophene and thiophene coupled benzimidazole derivatives / 4-(tert-butyl)-4,7-bis(4-hexylthiophen-2-yl)spiro[benzo[d]imidazole-2,1-cyclohexane] and 4-(tert-butyl)-4, 7-bis(thiophenyl)spiro[benzo[d]imidazole-2,1-cyclohexane] were used as photosensitizers to broaden the active area of diaryliodonium salts. Both quinoxaline and benzimidazole derivatives are expected to be efficient in cationic photopolymerization with a variety of vinyl and oxide monomers at room temperature upon long wavelength UV irradiation. Photopolymerization will be initiated by diphenyliodonium salts and monitored with Optical Pyrometry. Characterization will be completed with optical absorption, flourescence studies and photopolymerization under solar irradiation.
16

Phase I animal safety study of new second generation porphyrin based photosensitizers in the Syrian Golden hamster

Wittmann , Johannes , Clinical School - South Western Sydney, Faculty of Medicine, UNSW January 2007 (has links)
Pancreatic cancer kills over 1700 people each year in Australia. In 2000, there were 1908 new cases diagnosed and it remains one of the least treatable malignancies. In the USA, it was the fourth leading cause of cancer death in 2004, with 31,860 new cases and 31,270 recorded deaths. Photodynamic therapy (PDT) is a novel, potentially useful treatment for locally advanced pancreatic cancer with only limited research and clinical work addressing this until now. PDT induces non-thermal, cytotoxic and ischaemic injury to a targeted volume of tissue. During PDT, a photosensitizer is activated by non-thermal light in the presence of oxygen, generating cytotoxic oxygen species and inducing cellular injury and microvascular occlusion. The aim of this thesis was to conduct an animal safety study using two second generation photosensitizers, talaporfin sodium and verteporfin, to assess the risks of pancreatic PDT by looking at injury to organs adjacent to the pancreas and assessing recovery from PDT treatment of the pancreas. The Syrian Golden hamster animal model was used to compare the results of this research to previous work by other authors. The study design incorporated a number of additional experiments, including quantitative tissue fluorescence techniques, plasma level analysis and histopathology techniques. The methods for the animal safety study were similar to the approach used in the clinical setting and provided vital data on the likely risks and side effects of phototherapy in humans. The first study, looking at talaporfin sodium, found likely risks of duodenal injury, gastric injury and death with a limited effect on normal pancreas at photosensitizer doses likely to be employed for pancreatic cancer PDT. The second study, using verteporfin, found similar results with a more potent effect on the normal pancreas at studied drug doses. Both agents had short drug-light intervals, ranging from 15 minutes to 2 hours, reducing the need for pre-treatment hospitalization and short photosensitivity periods of about one to two weeks. Some animals suffered minor cutaneous photosensitivity injuries. A human pancreatic cancer PDT pilot study is feasible and the risks and complications should be acceptable.
17

Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer / Produção de metabólitos primários e secundários em capim-braquiária em adubação nitrogenado

Syeda Maryam Hussain 31 May 2016 (has links)
Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the literature about SM in Brachiaria, metabolites production and its chemical profile enable us to focus not only on the nutritive value but to get answers in all aspects and especially on toxicity. The study was conducted in the period of december 2013 to december 2014; in greenhouse FZEA-USP. B. decumbens was used with two cutting heights (10 and 20 cm) and nitrogen doses (0, 150, 300 and 450 kg ha-1) in complete randomized block design. The bromatological analysis were carried out on near infrared spectroscopy. Generally, the application of 150 kg ha-1 N was sufficient to promote the nutritional value in B. decumbens but above it the nitrogen use efficiency decline significantly. The highest dry matter yield (99.97 g/pot) was observed in autumn and the lowest was in winter (30.20 g/pot). While, as per nitrogen dose the average highest dry matter yield was at 150 kg ha-1 (79.98 g/pot). The highest crude protein was observed in winter (11.88%) and the lowest in autumn (7.78%). By the cutting heights; the 10 cm proved to have high CP (9.51%). In respect of fibrous contents, the highest acid detergent fiber was noted in summer (36.37%) and lowest in winter (30.88%). While the neutral detergent fiber was being highest in autumn and lowest in spring (79.60%). The highest in vitro dry matter and organic matter digestibilities were noted at 300 kg ha-1 N; being 68.06 and 60.57%; respectively; with the lowest observed in without N treatments (62.63% and 57.97), respectively. For determination of the classes, types and concentration of SM in B. decumbens, phytochemical tests, thin layer and liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis were carried out. Height, nitrogen and seasons significantly (P <0.0001) affected the secondary metabolic profile. A new protodioscin isomer (protoneodioscin (25S-)) was identified for first time in B. decumbens and is supposed to be the probable toxicity reason. Its structure was verified by 1D and 2D NMR techniques (1H, 13C) and 1D (COSY-45, edited HSQC, HMBC, H2BC, HSQC -TOCSY, NOESY and 1 H, 1 H, J). All factors influence the metabolic profile significantly (P <0.0001). The lowest phenols were at 300 kg ha-1 while the lowest flavones were at 0 kg ha-1. Season wise the highest phenols occurred in autumn (19.65 mg/g d.wt.) and highest flavones (28.87 mg/g d.wt.) in spring. Seasons effect the saponin production significantly (P <0.0001) and the results showed significant differences in the protodioscin (17.63±4.3 - 22.57±2.2 mg/g d.wt.) and protoneodioscin (23.3±1.2 - 31.07±2.9 mg/g d.wt.) concentrations. The highest protodioscin isomers concentrations were observed in winter and spring and by N doses the highest were noted in 300 kg ha-1. Simply, all factors significantly played their role in varying concentrations of secondary metabolites. / As plantas produzem diversas substâncias e produtos e os metabólitos primários e secundários (MS) estão entre eles, apresentando tanto efeitos benéficos como limitação de utilização. Geralmente, a forrageiras não são consideradas tóxicas aos animais ou como fonte de MS. As espécies de braquiárias são caracterizadas pelo alto valor nutricional, entretando a Brachiaria decumbens é a espécie mais tóxica para causar a fotossensibilização. A ausência de informações detalhadas na literatura a respeito de MS, sua produção e perfil químico nos faz focar não somente no aumento da produção de matéria fresca e no valor nutritivo da planta mas, em obter respostas em todos os aspectos e na redução de sua toxicidade. O estudo foi conduzido no período de dezembro 2013 ate dezembro 2014, em casa de vegetação localizada na FZEA-USP. Utilizou-se duas alturas de corte (10 e 20 cm) e quatro doses de nitrogênio (0, 150, 300 e 450 kgoha-1) em delineamento de blocos casualizados (4x2). Altura, doses de N e estação afetaram significativamente o perfil de MS. Houve aumento na produção de saponina nas estações da primavera e outono devido ao estresse. A análise bromatológica foi feita por espectroscopia de infravermelho próximo. Geralmente, a aplicação de 150 kgoha-1 de N foi suficiente para promover o valor nutricional na B. decumbens, entretanto acima desse valor a eficiência de uso de Nitrogênio decai significativamente. A maior produção de matéria seca (MS) (99,97 g/vaso) foi observada no outono e a menor foi no inverno (30,20 g/vaso). Embora, de acordo com a dose de nitrogênio, o maior rendimento médio de matéria seca foi de 150 kgoha-1 (79,98 g/vaso). Observou-se que o maior teor de proteína bruta (CP) foi no inverno (11,88%) e o menor foi no outono (7,78%). Pelas alturas de corte, os 10 cm provaram ter alta CP (9,51%). A respeito do conteúdo fibroso, o maior teor de fibra detergente ácida foi observado no verão (36,37%) e o teor mais baixo no inverno (30,88%). Por outro lado, o teor da fibra em detergente neutro foi maior no outono e o menor teor na primavera (79,60%). As maiores digestibilidades in vitro da matéria seca e matéria orgânica foram observadas em 300 kgoha-1 de N, sendo 68,06% e 60,57% com o menor valor observado em tratamentos sem N (62,63% e 57,97%), respectivamente. Para determinação das classes, tipos e concentração de MS em B. decumbens, foram realizados testes por fitoquímico, cromatografia de camada fina, cromatografia líquida acoplada à espectrometria de massa e ressonância magnética nuclear. Foi identificado um novo isômero de protodioscina (protoneodioscina (25S-) pra primeria vez na B. decumbens que é supostamente a provável razão da toxicidade. Sua estrutura foi verificada pelo 1D e 2D (1H combinação de 1D (1H, 13C) e a técnica 1D RMN (COSY-45, editado HSQC, HMBC, H2BC, HSQC-TOCSY, NOESY e 1H, 1H, J) como O-α-L -rhamnopyranosyl- (1 4) -O-β-D- glucopiranosil- (1 6) -O-β-D-6-O-acetylglucopyranosyl-] (1 2) - p-D-glucopiranosil-28 medicagen. Todos os fatores influenciaram o perfil metabólico significativamente (P <0,0001). Para flavonas, a menor produção foi observada em outono (19,65 mg/g peso seco (p.s)) e a maior na primavera (28.87 mg/g p.s). As concentrações de saponina foram afetadas significativamente (P<0,0001) pelas estações e os resultados mostraram diferenças na protodioscina (17,63±4,3 - 22,57±2,2 p.s) e protoneodioscina (23,3±1,2 - 31,07±2,9 p.s). Os maiores teores da concentração dos isômeros de protodioscina foram observados no inverno e na primavera e em relação ao N aplicado, o maior teor foi de 300 kgoha-1. Simplesmente, todos os fatores influenciaram significativamente a variação das concentrações dos metabólitos secundários.
18

Singlet Oxygen Generation Using New Fluorene-based Photosensitizers Under One- And Two-photon Excitation

Andrasik, Stephen James 01 January 2007 (has links)
Molecular oxygen in its lowest electronically excited state plays an important roll in the field of chemistry. This excited state is often referred to as singlet oxygen and can be generated in a photosensitized process under one- or two-photon excitation of a photosensitizer. It is particularly useful in the field of photodynamic cancer therapy (PDT) where singlet oxygen formation can be used to destroy cancerous tumors. The use of two-photon activated photosensitizers possesses great potential in the field of PDT since near-IR light is used to activate the sensitizer, resulting in deeper penetration of light into biological tissue, less photobleaching of the sensitizer, and greatly improved resolution of excitation. The synthesis and photophysical characterization of new fluorene-based photosensitizers for efficient singlet oxygen production were investigated. The spectral properties for singlet oxygen production were measured at room temperature and 77 K. Two-photon absorption (2PA) cross-sections of the fluorene derivatives were measured by the open aperture Z-scan method. The quantum yields of singlet oxygen generation under one- and two-photon excitation (Φ∆ and 2PAΦ∆, respectively) were determined by the direct measurement of singlet oxygen luminescence at ≈ 1270 nm. The values of Φ∆ were independent of excitation wavelength, ranging from 0.6 - 0.9. The singlet oxygen quantum yields under two-photon excitation were 2PAΦ∆ ≈ ½Φ∆, indicating that the two processes exhibited the same mechanism of singlet oxygen production, independent of the mechanism of photon absorption.
19

A study of the effect of environmental lighting on growth, reproduction and behavior in turkeys (Meleagris gallopavo)

Levenick, Clifford Keith January 1977 (has links)
This study was designed to determine the effect of environmental lighting on growth, reproduction and behavior in turkeys. During the growth phase a Large White and a Medium White line of turkeys were reared on an intermittent (2L:2D) or a diurnal (12L:l2D) light regimens under white, red (650 nm) or blue (450 nm) light environments. The turkeys grew faster under blue light than under red or white light up to 16 weeks of age. However, by 24 weeks of age, the rates of gain were significantly greater under the white and red lights. Growth rates were significantly greater under the intermittent regimen as compared to the diurnal regimen for both lines and sexes. The greatest acceleration in growth rate was observed from 4 to 10 weeks of age with this advantage still evident at 24 weeks of age. There were no significant differences in feed efficiency due to regimen or color. Early mortality was highest under blue light but late mortality was greater under red and white light. Mortality was higher for the LW than MW birds. Live grades were unaffected by light regimen or color but feather condition was poorest for birds reared under white diurnal regimen. The light color and regimen had no significant effect on the histological and physiological parameters measured. However, measurements of sexual development tended to be lower in both sexes for birds reared under blue light. Turkeys growing under the blue light regimens were the most placid while those reared under the white diurnal regimen were the most nervous. In the reproductive phase, medium white turkeys from each growth phase regimen and color combination were placed into white, red and blue light pens. Mating behavior measures were higher under red and white light than under blue light. In addition, rearing of turkeys under blue lights appeared to reduce sexual behavior in Experiment 2. For most mating behavior measures, the optimum light color combination appeared to be the white growth-white reproductive light program. While all mating behavior measures were continually lower for turkeys reared under intermittent light than those reared under a diurnal regimen, these differences were not significantly different. Turkeys exhibited two types of agonistic behavior. Fights between toms and hens occurred regularly in the blue reproductive light pens and rarely in the others. The majority of the fights occurred among hens and toms reared under red light. Toms from blue growth phase pens and subsequently placed in the red reproductive light environments, exhibited a super-aggressive behavior towards any human entering those pens. Egg production and semen volume measures were significantly greater for turkeys in the red and white reproductive pens than for those under the blue light conditions. The hens in the red and white growth pens came into egg production prematurely at 27 weeks of age when maintained on an intermittent light regimen during the growth phase. / Ph. D.
20

Effect of Netropsin on One-electron Oxidation of DNA

Roberts, Lezah Wilette 19 July 2005 (has links)
One electron oxidation of DNA has been studied extensively over the years. When a charge is injected into a DNA duplex, it migrates through the DNA until it reaches a trap. Upon further reactions, damage occurs in this area and strand cleavage can occur. Many works have been performed to see what can affect this damage to DNA. Netropsin is a minor groove binder that can bind to tracts of four to five A:T base pairs. It has been used in the studies within to determine if it can protect DNA against oxidative damage, caused by one-electron oxidation, when it is bound within the minor groove of the DNA. By using a naphthacenedione derivative as a photosensitizer, several DNA duplexes containing netropsin binding sites as well as those without binding sites, were irradiated at 420 nm, analyzed, and visualized to determine its effect on oxidative damage. It has been determined netropsin creates a quenching sphere of an average of 5.8 * 108 Šwhether bound to the DNA or not. Herein we will show netropsin protects DNA against oxidative damage whether it is free in solutions or bound within the minor groove of a DNA duplex.

Page generated in 0.2386 seconds