• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Proteins from photosynthetic bacteria

Shipman, Robert Hugh January 2011 (has links)
Digitized by Kansas Correctional Industries
12

The control of gene expression by high light stress in Cyanobacteria through the apparent two-component NblS-RpaB signal transduction pair

Kappell, Anthony David. January 2008 (has links)
Thesis (Ph.D.) -- University of Texas at Arlington, 2008.
13

Vitamin E functions in photosynthetic organisms

Maeda, Hiroshi, January 2006 (has links)
Thesis (Ph. D.)--Michigan State University. Cell and Molecular Biology Program, 2006. / Title from PDF t.p. (viewed on Nov. 20, 2008) Includes bibliographical references. Also issued in print.
14

The metabolism of inorganic sulphur compounds by the Thiorhodaceae

Smith, Arnold Jeffrey January 1965 (has links)
No description available.
15

Harnessing solar energy by bio-photovoltaic devices

Bombelli, Paolo January 2012 (has links)
No description available.
16

Energetics of amino acid uptake in the photosynthetic halophile Ectothiorhodospira halophila

Rinehart, Clifford Atley 05 1900 (has links)
No description available.
17

Anaerobic hydrogen production by photosynthetic purplenonsulfur [sic] bacteria using volatile fatty acids

Teiseh, Eliasu Azinyui. January 2008 (has links)
Thesis (M.S.)--University of Wyoming, 2008. / Title from PDF title page (viewed on June 23, 2009). Includes bibliographical references (p. 81-85).
18

The anaerobic, phototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonas Palustris.

Kamal, Varsha Subhash, Carleton University. Dissertation. Biology. January 1992 (has links)
Thesis (Ph. D.)--Carleton University, 1993. / Also available in electronic format on the Internet.
19

Studies on inter-species expression of photosynthesis genes in Rhodobacter capsulatus

Zilsel, Joanna January 1990 (has links)
The primary amino acid sequences of the L, M, and H photosynthetic reaction center peptide subunits from a number of purple non-sulfur bacteria, including Rhodopseudomonas viridis, Rhodobacter sphaeroides, and Rhodobacter capsulatus have been previously shown to be highly homologous, and detailed X-ray crystallographic analyses of reaction centers from two species of purple non-sulfur bacteria, Rps. viridis and R. sphaeroides have shown that all recognized structural and functional features are conserved. Experiments were undertaken to determine whether genes encoding reaction center and light harvesting peptide subunits from one species could be functionally expressed in other species. Plasmid-borne copies of R sphaeroides and Rps. viridis pigment binding-peptide genes were independently introduced into a photosynthetically incompetent R. capsulatus mutant host strain, deficient in all known pigment-binding peptide genes. The R. sphaeroides puf operon, which encodes the L and M subunits of the reaction center as well as both peptide subunits of light harvesting complex I, was shown to be capable of complementing the mutant R. capsulatus host. Hybrid reaction centers, comprised of R. sphaeroides-encoded L and M subunits and an R. capsulatus-encoded H subunit, were formed in addition to the R. sphaeroides-encoded LHI complexes. These hybrid cells were capable of photosynthetic growth, but their slower growth rates under low light conditions and their higher fluorescence emission levels relative to cells containing native complexes, indicated an impairment in energy transduction. The Rps. viridis puf operon was found to be incapable of functional expression in the R. capsulatus mutant host. Introduction of a plasmid-borne copy of the Rps. viridis puhA gene, which encodes the H subunit of the reaction center, into host cells already containing the Rps. viridis puf operon, such that all structural peptides of the Rps. viridis reaction center were present, still did not permit stable assembly of Rps. viridis photosynthetic complexes. RNA blot analysis demonstrated that the barrier to functional expression was not at the level of transcription. Differences between Rps. viridis and R. sphaeroides that may account for their differing abilities to complement the R. capsulatus mutant host strain are discussed. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
20

A characterization of psbO mutant genes encoding the 33 kDa protein in a cyanobacterium

Tzalis, Dimitrios January 1992 (has links)
This research was an attempt to characterize previously constructed mutants with a specifically altered psbO gene which encodes a 33 kDa protein active in photosynthesis. This polypeptide was believed to function in stabilization of manganese ions during photolysis of water at the photosystem II. The initial phase of this work was concerned with determining the manganese content of the genetically manipulated PS II particles of the photosynthetically active cyanobacteria.We found however, that the results of the isolation procedure for PS II particles of photosynthetically active cyanobacteria as described by Burnap et al. was not reproducible in our research organism. This prevented the chemical characterization of function of these particles as had been planned.In the second phase of the research sequencing of the mutated gene was to be performed for several clones in order to determine the kinds of specific alterations that had been made. The mutated genes had been cloned into both pUC1 20 and pPGV5 vectors which were transformed into Escherichia OR (EQQJi) and the cyanobacterium Synechococcus PCC 7942, respectively.Several attempts were mad o isolate plasmid DNA from both the transformed E QQJI and cyanobacterium. Isolation of pUC120 DNA was not achieved due to the toxicity of the 33 kDa protein product of the psbO gene in sgJj. The pPGV5 plasmid isolation was successful and PCR-sequencing was performed. However, the sequencing did not result in a readable sequence. Instead, banding patterns showed more than one nucleotide per lane. Since pPGV5 contains a strong constitutive promoter, a large amount of mutant protein was being produced. Our findings suggested that transformed cyanobacteria may have been under pressure to revert the altered gene to wild-type. Thus, upon growth of a single colony to a larger volume, a heterogeneous population of cells with different sizes of plasmids may have resulted. Restriction analysis of isolated plasmid DNA confirmed the presence of multiple-sized plasmid molecules. Therefore, this research has shown that the previously constructed mutants are not stable enough to characterize for alterations in manganese binding. / Department of Biology

Page generated in 0.0665 seconds