1 |
The influence of light quality on the development of photosynthetic bacterial blooms in lakesParkin, Timothy Barrett. January 1978 (has links)
Thesis (M.S.)--Wisconsin. / Includes bibliographical references (leaves 187-191).
|
2 |
The role of infrared radiation in the evolution and ecology of anaerobic photosynthetic bacteriaJensen, Brandi Jean. January 2008 (has links)
Thesis (M.S.)--University of Wyoming, 2008. / Title from PDF title page (viewed on August 3, 2009). Includes bibliographical references (p. 60-64).
|
3 |
Ribulose-1,5-biphosphate carboxylase-oxygenase and carbon dioxide fixation in the RhodospirillaceaeSani, A. January 1985 (has links)
No description available.
|
4 |
Spin-correlated radical pairs in photosynthetic systems, micelles and liquidsHunter, David A. January 1989 (has links)
No description available.
|
5 |
Investigation into the roles of the PsbL, PsbM, PsbT and Psb27 subunits of Photosystem II in Synechocystis sp. PCC 6803Bentley, Fiona K, n/a January 2008 (has links)
The PsbL, PsbM and PsbT subunits of photosystem II (PSII) are single-helix membrane-spanning proteins found at the monomer-monomer interface that may stabilize the dimeric complex. This study has characterised strains of Synechocystis sp. PCC 6803 where psbL, psbM and psbT have been interrupted by the insertion of antibiotic-resistance cassettes. The [Delta]PsbL strain exhibited slowed growth that correlated with a disruption in PSII assembly leading to an accumulation of CP43-less PSII monomers. Moreover, the [Delta]PsbL:[Delta]PsbM and [Delta]PsbL:[Delta]PsbT double mutants were not photoautotrophic. In contrast, the [Delta]PsbM and [Delta]PsbT strains grew photoautotrophically and supported oxygen evolution, albeit at reduced rates compared to wild type. S-state analyses showed that the removal of PsbM or PsbT did not affect the donor side reactions of PSII, which includes the oxidation of water, however, the removal of PsbT impaired electron flow between Q[A] and Q[B] on the acceptor side of PSII. Blue-Native PAGE revealed that removal of either PsbM or PsbT was insufficient to entirely disrupt dimer formation; however, the combined removal of PsbM and PsbT resulted in the predominance of monomeric forms of PSII in the [Delta]PsbM:[Delta]PsbT strain. Under high light (2 mE m⁻� s⁻� at 30�C), [Delta]PsbM and [Delta]PsbT cells were considerably more susceptible to photoinactivation than wild type; however, they were able to fully recover in a protein synthesis-dependent manner when returned to moderate light levels (0.03 mE m⁻� s⁻�). A requirement for Psb27 was found in the protein-synthesis-dependent recovery of photoinactivated [Delta]PsbT cells. More significantly, an absolute functional requirement was found for Psb27 in the [Delta]PsbM strain, where functional PSII complexes are not assembled in the absence of Psb27. These results suggest that Psb27 is critical for PSII assembly in the absence of PsbM, and also for the protein-synthesis-dependent recovery of PSII in the absence of PsbT. Moreover, in addition to Psb27, the PsbU subunit of the oxygen-evolving complex was also found to be an absolute functional requirement in the [Delta]PsbM strain, where functional PSII centres are not assembled when both PsbM and PsbU are absent. It appears, therefore, that PsbM has crucial functional interactions with specific extrinsic proteins located in the vicinity of the oxygen-evolving complex. Interestingly, the [Delta]PsbM strain was also found to have a high susceptibility to suppressor mutations, indicating it has important functional roles in the cyanobacterial cell.
|
6 |
A study on primary and cytochrome reactions in bacterial photosynthesis /Van Grondelle, Rienk, January 1978 (has links)
Thesis--Leiden. / Summaries in English and Dutch. Includes reprints of papers previously published in various journals. Includes bibliographical references.
|
7 |
Investigation into the roles of the PsbL, PsbM, PsbT and Psb27 subunits of Photosystem II in Synechocystis sp. PCC 6803Bentley, Fiona K, n/a January 2008 (has links)
The PsbL, PsbM and PsbT subunits of photosystem II (PSII) are single-helix membrane-spanning proteins found at the monomer-monomer interface that may stabilize the dimeric complex. This study has characterised strains of Synechocystis sp. PCC 6803 where psbL, psbM and psbT have been interrupted by the insertion of antibiotic-resistance cassettes. The [Delta]PsbL strain exhibited slowed growth that correlated with a disruption in PSII assembly leading to an accumulation of CP43-less PSII monomers. Moreover, the [Delta]PsbL:[Delta]PsbM and [Delta]PsbL:[Delta]PsbT double mutants were not photoautotrophic. In contrast, the [Delta]PsbM and [Delta]PsbT strains grew photoautotrophically and supported oxygen evolution, albeit at reduced rates compared to wild type. S-state analyses showed that the removal of PsbM or PsbT did not affect the donor side reactions of PSII, which includes the oxidation of water, however, the removal of PsbT impaired electron flow between Q[A] and Q[B] on the acceptor side of PSII. Blue-Native PAGE revealed that removal of either PsbM or PsbT was insufficient to entirely disrupt dimer formation; however, the combined removal of PsbM and PsbT resulted in the predominance of monomeric forms of PSII in the [Delta]PsbM:[Delta]PsbT strain. Under high light (2 mE m⁻� s⁻� at 30�C), [Delta]PsbM and [Delta]PsbT cells were considerably more susceptible to photoinactivation than wild type; however, they were able to fully recover in a protein synthesis-dependent manner when returned to moderate light levels (0.03 mE m⁻� s⁻�). A requirement for Psb27 was found in the protein-synthesis-dependent recovery of photoinactivated [Delta]PsbT cells. More significantly, an absolute functional requirement was found for Psb27 in the [Delta]PsbM strain, where functional PSII complexes are not assembled in the absence of Psb27. These results suggest that Psb27 is critical for PSII assembly in the absence of PsbM, and also for the protein-synthesis-dependent recovery of PSII in the absence of PsbT. Moreover, in addition to Psb27, the PsbU subunit of the oxygen-evolving complex was also found to be an absolute functional requirement in the [Delta]PsbM strain, where functional PSII centres are not assembled when both PsbM and PsbU are absent. It appears, therefore, that PsbM has crucial functional interactions with specific extrinsic proteins located in the vicinity of the oxygen-evolving complex. Interestingly, the [Delta]PsbM strain was also found to have a high susceptibility to suppressor mutations, indicating it has important functional roles in the cyanobacterial cell.
|
8 |
Environmental factors affecting the growth of photosynthetic bacteria in lakesParkin, Timothy Barrett. January 1980 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1980. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
9 |
Abundance, diversity, and distribution of aerobic anoxygenic phototrophic bacteria in the Delaware estuaryWaidner, Lisa A. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: David L. Kirchman, College of Marine and Earth Studies. Includes bibliographical references.
|
10 |
Modified pigments and mechanisms of energy transfer in LH2 complexes from purple bacteriaFraser, Niall Johnston January 1998 (has links)
No description available.
|
Page generated in 0.114 seconds