• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation, élaboration et caractérisation de cellules photovoltaïques à base de silicium cristallin pour des applications sous concentration / Modelisation, fabrication and characterisation of silicon based solar cell for application under concentrated sunlight

Guillo Lohan, Benoit 26 November 2018 (has links)
Les performances électriques des cellules photovoltaïques à base de silicium sont fortement dégradées lorsque leur température augmente. Cette problématique, pourtant bien connue, n’est pas suffisamment prise en considération dans l’industrie du photovoltaïque. Pour parer à cette dégradation, deux voies d’améliorations peuvent être explorées : diminuer la température de fonctionnement des cellules ou réduire leurs coefficients de dégradation en température. Cette étude est d’autant plus importante pour les applications sous concentrations, un éclairement élevé favorisant l’échauffement des cellules. Pour les facteurs de concentration élevés, l’utilisation de systèmes de refroidissement actifs réduit drastiquement la température de fonctionnement. Pour les faibles éclairements, le refroidissement passif est préféré, bien moins coûteux en énergie. Ce travail de thèse est focalisé sur l’étude du comportement thermo-électrique des cellules sous faible concentration du rayonnement incident. Un banc de caractérisation innovant développé dans cette thèse a rendu possible la quantification des variations de la température de la cellule avec la tension de polarisation sous différents facteurs de concentration. Avec l’augmentation de la polarisation, une évolution du facteur d’émission thermique est observée du fait des variations de la concentration de porteurs de charge minoritaires. Le refroidissement radiatif est minimal au courant de court-circuit et est maximal à la tension de circuit ouvert : la température atteinte au point de court-circuit est supérieure à celle atteinte en circuit ouvert. Pour une cellule donnée, sous un éclairement de 3 soleils, un écart de température de 6.2 °C a pu être mesuré entre ces deux points. La fabrication de cellules avec des propriétés différentes nous a permis de confirmer l’importance du dopage de la base et de l’architecture sur l’augmentation du refroidissement radiatif avec la polarisation. De plus, la comparaison du comportement thermo-électrique des cellules de type de dopages différents a mis en avant de plus faibles coefficients de dégradation en température de la tension en circuit ouvert pour les cellules ayant un substrat de type n. Par exemple, pour une température de et sous un éclairement de 1 soleil, un coefficient de dégradation en température du Voc de −0.45% %·°C-1 a été mesuré sur une cellule de type n contre −0.49%·°C-1 pour une cellule de type p. / The electrical performances of silicon based solar cells strongly degrade when increasing their temperature. However, such a well-known issue is too scarcely considered in the phovoltaic industry. To prevent the degradation of silicon based solar cells, two ways of improvement can be explored : one can either decrease the cells’ functionning temperature or either reduce the temperature degradation coefficient. As light intensity tends to favor cell heating, the study is even more important under concentrated sunlight. Regarding high light intensities, active cooling systems can be used to drastically reduce the cell temperature. For low light intensities, passive cooling systems, such as radiative cooling, are more energetically savy. The thesis aims at studying the electro-thermal behavior of cells under low light intensities. An innovative experimental set-up has been developped during this thesis to quantify the variation of the cell temperature with the applied bias voltage. When increasing the bias, an evolution of the cell emissivity is observed because of a variation of the minorities carrier concentration. The radiative cooling is at its lowest at the short circuit current and peaks its highest value at the open circuit voltage : as a result, the reached temperature is higher at the short circuit current than at the open circuit voltage. For a given solar cell, under 3 suns, a temperature shift of 6.2 °C was measured between these two points. The control of the fabrication process gives the opportunity to analyse the influence of the base doping and cell architecture on the evolution of the radiative cooling with the applied bias. Furthermore, the comparison between the electro-thermal behaviors of solar cells, which are related to their type of doping, has shown a lower thermal degradation coefficient of the open circuit voltage for n-type based dope solar cells. For example, at 60°C and under 1 sun, we measured a thermal degradation coefficient BVoc = −0.45% %·°C-1 for a n type solar cell whereas the p type solar cell recorded BVoc = −0.49% %·°C-1.
2

Effets plasmoniques induits par des nanostructures d’argent sur des couches minces de silicium / Plasmonic effects induced by silver nanostructures on thin-films silicon

Mailhes, Romain 04 October 2016 (has links)
Le domaine du photovoltaïque en couches minces s’attache à réduire le coût de l’énergie photovoltaïque, en réduisant considérablement la quantité de matières premières utilisées. Dans le cas du silicium cristallin en couches minces, la réduction de l’épaisseur de la cellule s’accompagne d’une baisse drastique de l’absorption, notamment pour les plus fortes longueurs d’onde. Nombreuses sont les techniques aujourd’hui mises en œuvre pour lutter contre cette baisse de performance, dont l’utilisation des effets plasmoniques induits par des nanostructures métalliques qui permettent un piégeage de la lumière accru dans la couche absorbante. Dans ces travaux, nous étudions l’influence de nanostructures d’argent organisées suivant un réseau périodique sur l’absorption d’une couche de silicium. Ces travaux s’articulent autour de deux axes majeurs. L’influence de ces effets plasmoniques sur l’absorption est d’abord mise en évidence à travers différentes simulations numériques réalisées par la méthode FDTD. Nous étudions ainsi les cas de réseaux périodiques finis et infinis de nanostructures d’argent situés sur la face arrière d’une couche mince de silicium. En variant les paramètres du réseau, nous montrons que l’absorption au sein du silicium peut être améliorée dans le proche infrarouge, sur une large plage de longueurs d’onde. Le second volet de la thèse concerne la réalisation des structures modélisées. Pour cela, deux voies de fabrication ont été explorées et développées. Pour chacune d’entre elles, trois briques élémentaires ont été identifiées : (i) définition du futur motif du réseau grâce à un masque, (ii) réalisation de pores dans le silicium et (iii) remplissage des pores par de l’argent pour former le réseau métallique. La première voie de fabrication développée fait appel à un masque d’alumine, réalisé par l’anodisation électrochimique d’une couche d’aluminium, pour définir les dimensions du réseau métallique. Une gravure chimique assistée par un métal est ensuite utilisée pour former les pores, qui seront alors comblés grâce à des dépôts d’argent par voie humide. La seconde voie de fabrication utilise un masque réalisé par lithographie holographique, une gravure des pores par RIE et un remplissage des pores par dépôt d’argent electroless. Les substrats plasmoniques fabriqués sont caractérisés optiquement, au moyen d’une sphère intégrante, par des mesures de transmission, réflexion et absorption. Pour tous les substrats plasmoniques caractérisés, les mesures optiques montrent une baisse de la réflexion et de la transmission et une hausse de l’absorption pour les plus grandes longueurs d’onde. / Thin-film photovoltaics focus on lowering the cost reduction of photovoltaic energy through the significant reduction of raw materials used. In the case of thin-films crystalline silicon, the reduction of the thickness of the cell is linked to a drastic decrease of the absorption, particularly for the higher wavelengths. This decrease of the absorption can be fought through the use of several different light trapping methods, and the use of plasmonic effects induced by metallic nanostructures is one of them. In this work, we study the influence of a periodic array of silver nanostructures on the absorption of a silicon layer. This work is decomposed into two main axes. First, the influence of the plasmonic effects on the silicon absorption is highlighted through different numerical simulations performed by the FDTD method. Both finite and infinite arrays of silver nanostructures, located at the rear side of a thin silicon layer, are studied. By varying the parameters of the array, we show that the silicon absorption can be improved in the near infrared spectral region, over a wide range of wavelengths. The second part of the thesis is dedicated to the fabrication of such modeled structures. Two different approaches have been explored and developed inside the lab. For each of these two strategies, three major building blocks have been identified: (i) definition of the future array pattern through a mask, (ii) etching of the pattern in the silicon layer and (iii) filling of the pores with silver in order to form the metallic array of nanostructures. In the first fabrication method, an anodic alumina mask, produced by the electrochemical anodization of an aluminium layer, is used in order to define the dimensions of the metallic array. A metal assisted chemical etching is then performed to produce the pores inside the silicon, which will then be filled with silver through a wet chemical process. The second fabrication method developed involves the use of holographic lithography to produce the mask, the pores in silicon are formed by reactive ion etching and they are filled during an electroless silver deposition step. The fabricated plasmonic substrates are optically characterized using an integrating sphere, and transmission, reflection and absorption are measured. All the characterized plasmonic substrates shown a decrease of their reflection and transmission and an absorption enhancement at the largest wavelengths.

Page generated in 0.4282 seconds