• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 15
  • 15
  • 12
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementing Photovoltaic Panels and Thermal Water Heating

Haas, Connor 16 December 2014 (has links)
Sustainable Built Environments Senior Capstone / In today’s society we are faced with many problems that result from the use of traditional energy sources. Due to the lack of efficient alternative energy sources we are consistently trying to produce technologically advanced methods and tools to offset our dependency on traditional energy systems that are harming the planet as a whole. Every great accomplishment needs a starting point. The University of Arizona is going to an influential success story that gets the ball rolling. Implementing two energy saving tools known as photovoltaic panels and thermal water heating units will allow advocates to see the benefits that can come from sustainable technology. Through state and federal incentives solar panels are able to pay themselves off over the years in a majority of the states. Without federal or state incentives, the solar panels would not save the consumer enough money to repay their initial investment. Thermal water heating units save the consumer enough money to pay themselves off over the years. Overall both thermal water heating units and photovoltaic panels provide a clean source of energy.
2

Analysis of the Solarus C-PVT solar collector and design of a new prototype : Market review and Production process guideline

Saizar Zubeldia, Xabier, Vila Montagut, Gerard January 2016 (has links)
Finding cleaner and sustainable energy resources is one of the most important concerns for the development of humanity. Solar energy is taking an essential role in this matter as the production cost of solar collectors is decreasing and more solar installations are being set up every year throughout the world. One way of reducing the cost of solar panels is by using concentrators that are cheaper than the costly photovoltaic cells and can increase their output. Solarus AB designed a Photovoltaic Thermal (PVT) hybrid collector that uses this principle and which is a variation of the Maximum Reflector Collector (MaReCo) design and is a Compound Parabolic Collector (CPC). This thesis has two main objectives. The first one is to design variations of the actual Solarus’ design and some alternative MaReCo designs and pure parabola designs. These designs include new solar cell cuts which are based on 4 busbar solar cells. In this way a future in-depth analysis may be carried out by comparing different receiver designs and collector boxes. The second goal is to investigate the current electrical and thermal performance of the collectors from Solarus AB which are installed in the Hus 45 of HiG. The appropriate data of the installation has been obtained using simulations and specific software, and it has been analysed with Microsoft Excel®. Concerning the new designs of the receivers and boxes, everything has been prepared for the future construction of the prototypes. All the measurements and their adjustments have been taken into account to define the size of the components and the process of building has been set up. Moreover, some future work has been planned in order to move forward the project. Regarding the analysis of the HiG installation, both electrical and thermal performance have resulted to be significantly lower compared with their estimated simulation, being their real output around 60 % of the estimated one. In the thermal part, the losses in the pipeline result to be more than a third part of the produced heat. In the electrical part, the production varies a lot between different collectors due to some of them do not work properly, consequence of poor condition of the solar panels (broken cells, dirt, shading, etc.).
3

HYDROGENATED AMORPHOUS SILICON PV AS AN ABSORBER COATING FOR PHOTOVOLTAIC THERMAL SYSTEMS

PATHAK, MICHAEL 14 November 2011 (has links)
Driven by the limitations of solar-optimized roof space and International Energy Association (IEA) Task 35, there is a renewed interest in photovoltaic solar thermal (PVT) hybrid systems. Current PVT systems focus on cooling the solar photovoltaic (PV) cells to improve the electrical performance. This however, causes the thermal component (T) to underperform. An exergetic study was completed comparing a PVT, PV + T and a PV only system in Detroit, Denver and Phoenix. It was found that the PVT system outperformed the PV + T system by 72% for each location and by 8, 8.6 and 9.9% for Detroit, Denver and Phoenix when compared to the PV only system. To further improve the PVT system, using hydrogenated amorphous silicon (a-Si:H) PV as the absorber layer of the solar thermal device was explored. The temperature coefficient and annealing properties of a-Si:H allow the thermal component to run more efficiently, while enabling the a-Si:H i-layers to be thicker resulting in more electricity production. It was found that running i-layer thicker cells (630nm and 840nm) stabilized at higher efficiencies at 90°C (potential PVT operating temperatures) than the thinner cell (420nm) by 2% and 0.5% respectively. In addition, spike annealing, which is a new concept of stagnating a PVT system to allow for the a-Si:H PV to anneal and return it to its original efficiencies was also investigated. It was found that over the lifetime of the system with the spike annealing occurring once a day 10.6% more electricity was produced than a system without stagnation. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2011-11-14 11:09:16.727
4

Μελέτη υβριδικού φωτοβολταϊκού θερμικού ηλιακού (PV/T) συστήματος θέρμανσης νερού / Study of hybrid photovoltaic thermal system for solar water heating

Νικολακοπούλου, Αρχοντούλα 07 June 2013 (has links)
Το μεγαλύτερο μέρος της απορροφούμενης ηλιακής ακτινοβολίας από τα φωτοβολταϊκά (φβ) κύτταρα δεν μετατρέπεται σε ηλεκτρισμό αλλά σε θερμότητα, η οποία συντελεί στην αύξηση της θερμοκρασίας τους με συνέπεια την μείωση της ηλεκτρικής τους απόδοσης. Η απαγωγή της θερμότητας από τα φβ πλαίσια βοηθά όχι μόνο στη μείωση της θερμοκρασίας λειτουργίας τους αλλά μπορεί και να αξιοποιηθεί αυξάνοντας τη συνολική ενεργειακή τους απόδοση. Τα ηλιακά συστήματα που έχουν τη δυνατότητα να παρέχουν τόσο ηλεκτρική όσο και θερμική ενέργεια είναι τα υβριδικά φωτοβολταϊκά / θερμικά (φβ/θ ή PV/T) συστήματα, τα οποία αναπτύσσονται τελευταία και έχουν αρχίσει να χρησιμοποιούνται σε επιδεικτικές εφαρμογές.Στην εργασία αυτή παρουσιάζονται πειραματικά αποτελέσματα από μία σχεδίαση ηλιακού υβριδικού φωτοβολταϊκού/θερμικού (φβ/θ ή PV/T) συστήματος, το οποίο αποτελείται από διάταξη απαγωγής της θερμότητας, με κυκλοφορία νερού. / Photovoltaic thermal hybrid solar collectors, sometimes known as hybrid PV/T systems or PVT, are systems that convert solar radiation into thermal and electrical energy. These systems combine a photovoltaic cell, which converts electromagnetic radiation (photons) into electricity, with a solar thermal collector, which captures the remaining energy and removes waste heat from the PV module. The capture of both electricity and heat allow these devices to be more overall energy efficient than solar photovoltaic (PV) or solar thermal alone. In this work the PV/T system was studied with working fluid the water.
5

Design, implementation and evaluation of a directly water cooled photovoltaic- thermal system

Mtunzi, Busiso January 2013 (has links)
This research project was based on the Design, Implementation and Evaluation of a Photovoltaic Water heating system in South Africa, Eastern Cape Province. The purpose of the study was to design and investigate the scientific and economic contribution of direct water cooling on the photovoltaic module. The method involved performance comparison of two photovoltaic modules, one naturally cooled (M1) and the other, direct water cooled module (M2). Module M2 was used to produce warm water and electricity, hence, a hybrid system. The study focused on comparing the modules’ efficiency, power output and their performance. The temperatures attained by water through cooling the module were monitored as well as the electrical energy generated. A data logger and a low cost I/V characteristic system were used for data collection for a full year. The data were then used for performance analysis of the modules. The results of the study revealed that the directly water cooled module could operate at a higher electrical efficiency for 87% of the day and initially produced 3.63% more electrical energy each day. This was found to be true for the first three months after installation. In the remaining months to the end of the year M2 was found to have more losses as compared to M1 as evidenced by the modules’ performance ratios. The directly water cooled module also showed an energy saving efficiency of 61%. A solar utilization of 47.93% was found for M2 while 8.77% was found for M1. Economically, the project was found to be viable and the payback period of the directly cooled module (M2) system was found to be 9.8 years. Energy economics showed that the system was more sensitive to the price changes and to the energy output as compared to other inputs such as operation and maintenance and years of operation. A generation cost of R0.84/kWh from the system was found and when compared to the potential revenue of R1.18 per kWh, the system was found to enable households to make a profit of 40.5 %. Use of such a system was also found to be able to contribute 9.55% towards carbon emission reduction each year. From these results, it was concluded that a directly cooled photovoltaic/thermal heating (PV/T) system is possible and that it can be of much help in terms of warm water and electricity provision.
6

Techno-Economic Assessment of Solar PV/Thermal System for Power and Cooling Generation in Antalya, Turkey

Kumbasar, Serdar January 2013 (has links)
In this study a roof-top PVT/absorption chiller system is modeled for a hotel building in Antalya, Turkey to cover the cooling demand of the hotel, to produce electricity and domestic hot water. PVT modules, an absorption chiller, a hot storage tank and a natural gas fired auxiliary heater are the main components of the system. Elecetrical power produced by the system is 94.2 MWh, the cooling power is 185.5 MWh and the amount of domestic hot water produced in the system is 65135 m3 at 45 0C annually.  Even though the systems is capable of meeting the demands of the hotel building, because of the high investment costs of PVT modules and high interest rates in Turkey, it is not economically favorable. Using cheaper solar collectors, integrating a cold storage unit in the system or having an improved conrol strategy are the options to increase the system efficiency and to make the system economically competitive.
7

Thermal Management of Combined Photovoltaic and Geothermal Systems

Almoatham, Sulaiman 15 May 2023 (has links)
No description available.
8

Comparação entre o desempenho de um coletor híbrido térmico fotovoltaico com o de um coletor plano e um módulo fotovoltaico convencional

Ancines, Crissiane Alves January 2016 (has links)
Os aproveitamentos de energia solar em aplicações térmicas ou para a produção de energia elétrica são cada vez mais importantes, por se tratarem de fontes de energia. Os estudos acerca dessas fontes estão se intensificando, a fim de melhorar seus desempenhos e suas aplicações para as condições atuais de desenvolvimento pelo mundo. Uma dessas tecnologias que utilizam como fonte a energia solar, desenvolvida nos últimos 30 anos, é o coletor híbrido térmico fotovoltaico. Esse coletor converte a energia proveniente da radiação solar em energia térmica e elétrica, simultaneamente, com a superposição de um módulo fotovoltaico a um coletor solar de placa plana, podendo ser promissor no progresso de novas tecnologias. Um coletor híbrido térmico fotovoltaico tem sua eficiência térmica menor que um coletor térmico convencional, decorrente de uma maior perda de calor para o meio, pois, em geral, o coletor não tem proteção contra o vento, como a cobertura transparente em um coletor convencional. A eficiência elétrica desses coletores híbridos é maior quando comparada a um sistema fotovoltaico convencional, pois há um resfriamento devido à passagem do fluido na parte posterior desses módulos. Para uma avaliação dessas eficiências, no presente trabalho, foram instalados três tipos de tecnologias que utilizam a energia solar como fonte, (um módulo fotovoltaico, um coletor híbrido térmico fotovoltaico e um coletor solar de placa plana) a fim de comparar os resultados de seus rendimentos, separadamente, atribuindo as mesmas condições meteorológicas em todos eles. A eficiência térmica máxima do coletor híbrido térmico fotovoltaico teve seu valor 3 vezes menor que o do coletor de placa plana utilizado. Já a eficiência elétrica de cada módulo teve um aumento de 5,5% comparando a diferença de energia elétrica gerada ao longo de um ano. Com esses resultados, pode-se dizer que melhorias na parte térmica do coletor híbrido térmico fotovoltaico poderiam ser feitas, de forma a aumentar seu desempenho térmico sem comprometer o rendimento das suas células fotovoltaicas. / The use of solar energy for thermal application and production of electric energy is becoming more important, because it is a form of clean and renewable energy. The studies of these sources are intensifying to improve the performance of these technologies and their applications for the current conditions of the development around the world. One of this technologies using as a source solar energy, developed in the last 30 years is the photovoltaic thermal hybrid solar collector. This collector simultaneously converts the solar radiation into thermal and electrical energy, with the superposition of a photovoltaic module on a flat plate solar collector, may be promising in the progress of new technologies. That a photovoltaic thermal hybrid solar collector has a lower thermal efficiency than a conventional thermal collector, due a greater loss of heat to the environment, because in general the collector has no protection from the wind, as the transparent cover in a conventional collector. The electrical efficiency of these hybrid collectors is higher compared to a conventional photovoltaic, because their cells are cooled by the water passing in the back of the photovoltaic plate. For an evaluation of efficiencies, it were installed three types of technologies that use solar energy as energy source (a photovoltaic module, a thermal hybrid collector and a flat plate solar collector) to separately compare the results of their performance, exposing them all of the same meteorological conditions. The maximum thermal efficiency of the photovoltaic thermal hybrid solar collector was determined being three times lower value than the flat plate collector one. The electrical efficiency of each module was increased by 5.5 % comparing the difference of the electrical energy generated over a whole year. These results indicate that improvements in the thermal part of the photovoltaic thermal hybrid solar collector could be made, increasing the thermal performance without compromise their solar cells efficiency.
9

Comparação entre o desempenho de um coletor híbrido térmico fotovoltaico com o de um coletor plano e um módulo fotovoltaico convencional

Ancines, Crissiane Alves January 2016 (has links)
Os aproveitamentos de energia solar em aplicações térmicas ou para a produção de energia elétrica são cada vez mais importantes, por se tratarem de fontes de energia. Os estudos acerca dessas fontes estão se intensificando, a fim de melhorar seus desempenhos e suas aplicações para as condições atuais de desenvolvimento pelo mundo. Uma dessas tecnologias que utilizam como fonte a energia solar, desenvolvida nos últimos 30 anos, é o coletor híbrido térmico fotovoltaico. Esse coletor converte a energia proveniente da radiação solar em energia térmica e elétrica, simultaneamente, com a superposição de um módulo fotovoltaico a um coletor solar de placa plana, podendo ser promissor no progresso de novas tecnologias. Um coletor híbrido térmico fotovoltaico tem sua eficiência térmica menor que um coletor térmico convencional, decorrente de uma maior perda de calor para o meio, pois, em geral, o coletor não tem proteção contra o vento, como a cobertura transparente em um coletor convencional. A eficiência elétrica desses coletores híbridos é maior quando comparada a um sistema fotovoltaico convencional, pois há um resfriamento devido à passagem do fluido na parte posterior desses módulos. Para uma avaliação dessas eficiências, no presente trabalho, foram instalados três tipos de tecnologias que utilizam a energia solar como fonte, (um módulo fotovoltaico, um coletor híbrido térmico fotovoltaico e um coletor solar de placa plana) a fim de comparar os resultados de seus rendimentos, separadamente, atribuindo as mesmas condições meteorológicas em todos eles. A eficiência térmica máxima do coletor híbrido térmico fotovoltaico teve seu valor 3 vezes menor que o do coletor de placa plana utilizado. Já a eficiência elétrica de cada módulo teve um aumento de 5,5% comparando a diferença de energia elétrica gerada ao longo de um ano. Com esses resultados, pode-se dizer que melhorias na parte térmica do coletor híbrido térmico fotovoltaico poderiam ser feitas, de forma a aumentar seu desempenho térmico sem comprometer o rendimento das suas células fotovoltaicas. / The use of solar energy for thermal application and production of electric energy is becoming more important, because it is a form of clean and renewable energy. The studies of these sources are intensifying to improve the performance of these technologies and their applications for the current conditions of the development around the world. One of this technologies using as a source solar energy, developed in the last 30 years is the photovoltaic thermal hybrid solar collector. This collector simultaneously converts the solar radiation into thermal and electrical energy, with the superposition of a photovoltaic module on a flat plate solar collector, may be promising in the progress of new technologies. That a photovoltaic thermal hybrid solar collector has a lower thermal efficiency than a conventional thermal collector, due a greater loss of heat to the environment, because in general the collector has no protection from the wind, as the transparent cover in a conventional collector. The electrical efficiency of these hybrid collectors is higher compared to a conventional photovoltaic, because their cells are cooled by the water passing in the back of the photovoltaic plate. For an evaluation of efficiencies, it were installed three types of technologies that use solar energy as energy source (a photovoltaic module, a thermal hybrid collector and a flat plate solar collector) to separately compare the results of their performance, exposing them all of the same meteorological conditions. The maximum thermal efficiency of the photovoltaic thermal hybrid solar collector was determined being three times lower value than the flat plate collector one. The electrical efficiency of each module was increased by 5.5 % comparing the difference of the electrical energy generated over a whole year. These results indicate that improvements in the thermal part of the photovoltaic thermal hybrid solar collector could be made, increasing the thermal performance without compromise their solar cells efficiency.
10

Comparação entre o desempenho de um coletor híbrido térmico fotovoltaico com o de um coletor plano e um módulo fotovoltaico convencional

Ancines, Crissiane Alves January 2016 (has links)
Os aproveitamentos de energia solar em aplicações térmicas ou para a produção de energia elétrica são cada vez mais importantes, por se tratarem de fontes de energia. Os estudos acerca dessas fontes estão se intensificando, a fim de melhorar seus desempenhos e suas aplicações para as condições atuais de desenvolvimento pelo mundo. Uma dessas tecnologias que utilizam como fonte a energia solar, desenvolvida nos últimos 30 anos, é o coletor híbrido térmico fotovoltaico. Esse coletor converte a energia proveniente da radiação solar em energia térmica e elétrica, simultaneamente, com a superposição de um módulo fotovoltaico a um coletor solar de placa plana, podendo ser promissor no progresso de novas tecnologias. Um coletor híbrido térmico fotovoltaico tem sua eficiência térmica menor que um coletor térmico convencional, decorrente de uma maior perda de calor para o meio, pois, em geral, o coletor não tem proteção contra o vento, como a cobertura transparente em um coletor convencional. A eficiência elétrica desses coletores híbridos é maior quando comparada a um sistema fotovoltaico convencional, pois há um resfriamento devido à passagem do fluido na parte posterior desses módulos. Para uma avaliação dessas eficiências, no presente trabalho, foram instalados três tipos de tecnologias que utilizam a energia solar como fonte, (um módulo fotovoltaico, um coletor híbrido térmico fotovoltaico e um coletor solar de placa plana) a fim de comparar os resultados de seus rendimentos, separadamente, atribuindo as mesmas condições meteorológicas em todos eles. A eficiência térmica máxima do coletor híbrido térmico fotovoltaico teve seu valor 3 vezes menor que o do coletor de placa plana utilizado. Já a eficiência elétrica de cada módulo teve um aumento de 5,5% comparando a diferença de energia elétrica gerada ao longo de um ano. Com esses resultados, pode-se dizer que melhorias na parte térmica do coletor híbrido térmico fotovoltaico poderiam ser feitas, de forma a aumentar seu desempenho térmico sem comprometer o rendimento das suas células fotovoltaicas. / The use of solar energy for thermal application and production of electric energy is becoming more important, because it is a form of clean and renewable energy. The studies of these sources are intensifying to improve the performance of these technologies and their applications for the current conditions of the development around the world. One of this technologies using as a source solar energy, developed in the last 30 years is the photovoltaic thermal hybrid solar collector. This collector simultaneously converts the solar radiation into thermal and electrical energy, with the superposition of a photovoltaic module on a flat plate solar collector, may be promising in the progress of new technologies. That a photovoltaic thermal hybrid solar collector has a lower thermal efficiency than a conventional thermal collector, due a greater loss of heat to the environment, because in general the collector has no protection from the wind, as the transparent cover in a conventional collector. The electrical efficiency of these hybrid collectors is higher compared to a conventional photovoltaic, because their cells are cooled by the water passing in the back of the photovoltaic plate. For an evaluation of efficiencies, it were installed three types of technologies that use solar energy as energy source (a photovoltaic module, a thermal hybrid collector and a flat plate solar collector) to separately compare the results of their performance, exposing them all of the same meteorological conditions. The maximum thermal efficiency of the photovoltaic thermal hybrid solar collector was determined being three times lower value than the flat plate collector one. The electrical efficiency of each module was increased by 5.5 % comparing the difference of the electrical energy generated over a whole year. These results indicate that improvements in the thermal part of the photovoltaic thermal hybrid solar collector could be made, increasing the thermal performance without compromise their solar cells efficiency.

Page generated in 0.0408 seconds